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Abstract. Urban heat island (UHI) can be described as characteristics of warmth for both the 
atmospheres and surfaces in cities compared to rural surroundings. The attention on UHI has 
helped to advance the development of urban cooling strategies in Singapore. However, these 
strategies are often implemented at different levels with different mechanisms, and studies on 
the environmental implications of these strategies are often segregated. Therefore, understanding 
on how the urban canopy works is vital to analyse the energy performance, because canopy 
modelling is significant in estimating urban weather conditions, which affects the heat gain 
intake for buildings. It is thus become imperative to develop an integrated model for accurate 
prediction of weather conditions at different scales. By utilizing the Virtual Singapore (VSg) 
database, this study explores the development an integrated simulation platform, named 
BESCAM, for climate assessment and district energy demand. It focuses on urban canopy 
modelling and building energy simulation. The approach is to use CityGML from VSg as input, 
which comprises converted Building Information Modelling (BIM) buildings. Then, an urban 
canopy modelling (UCM) is developed to assess the microclimate condition with urban 
morphology consideration. Afterwards, building energy simulation can be conducted 
consecutively using EnergyPlus by integrating microclimate and building information. Hence, 
the BESCAM platform would offer a unique opportunity to architects, engineers, and scientists 
to use the same source of information, using VSg database, for conducting their own analysis 
and compare their conclusions. 

1.  Background 

1.1.  Urban Heat Island 
UHI is the name given to describe the characteristics of warmth for both the atmospheres and surfaces 
in cities (urban areas) compared to their (non-urbanized) surroundings. UHI is a result of densely built 
infrastructures of cities that absorb and trap solar radiation and traffic generated heat and retains the heat 
for periods longer than natural surfaces. Urban heat island affects street level thermal comfort, health 
and environment quality and may cause increase of energy demand.  

Heat island is caused by urbanization when urban surfaces (buildings, roads, pavements) store heat 
during daytime and release it during night-time into urban canyon, keeping urban areas hotter than their 
surroundings. Heat island affects urban canopy, cities' energy use and habitability [1]. It has been widely 
acknowledged that urban surfaces tend to absorb significant amount of solar radiation and release it as 
heat, due to the thermal properties of common building and pavement materials. Urban morphology 
parameters (e.g. pavement area, building height, wall surface area, green plot ratio, sky view factor) also 
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influence the microclimate in terms of the solar access and wind speed [2]. Anthropogenic heat released 
from traffic and building HVAC systems further heats up the environment in the street canyons. 

UHI in cities can be quantified by measuring UHI intensity, which refers to difference between 
background rural and highest urban temperature. In Singapore, the satellite image shows UHI effect 
during daytime. The ‘hot’ spots are normally observed on exposed hard surfaces in urban context, such 
as industrial area, airport and Central Business District (CBD). The satellite image also shows some 
‘cool’ spots, which are mostly observed on the large parks, the landscape in-between the housing estates 
and the catchment area [3].  

The annual average surface temperature in Singapore has increased from 26.6°C in 1972 to 27.7°C 
in 2014. It is predicted to rise by 1.4-4.6°C by 2099 in the context of global warming. The UHI effect 
that a city area that is significantly warmer than its surrounding rural areas is also found quite evident. 
The densely built urban areas, such as central business district (CBD) area, is up to 4°C hotter than green 
spaces (e.g. parks, forests, catchment areas, etc.) during hot afternoons. The daytime UHI intensity on 
National University of Singapore (NUS) campus was found as high as 3°C at around 3 pm [4-7].  

1.2.  Importance of canopy modelling on different scales 
The attention on UHI and microclimate issues has helped to advance the development of urban cooling 
strategies in Singapore. Some strategies have been proved effective in UHI mitigation, such as providing 
parks and trees, better street canyon ventilation, green roofs and walls, phase change and ‘cool’ 
materials, self-shading building envelopes, etc. However, these urban cooling strategies are often 
implemented at different levels with different mechanisms, and studies on the environmental 
implications of these strategies are often segregated.  

Therefore, in order to mitigate the UHI in Singapore, it is necessary to have a comprehensive 
understanding on how the urban canopy works. Canopy modelling plays a vital role in estimating 
weather conditions within an urban area, such as ambient temperature. However, the ambient 
temperature in urban environment is very dynamic, due to the influence of various environmental factors 
in the following aspects:  

 
• Regional climate: solar radiation, seasonal wind and direction, humidity, etc. 
• Urban morphology: greenery, building density, road pattern, canyon width, sky view factor, 

water, etc. 
• Building and pavement material properties: reflectivity, emissivity, heat capacity, etc. 
• Anthropogenic heat: vehicle exhausts, HVAC system, human metabolism, etc. 

 
 

 

Figure 1. Climate modelling at different levels 
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So far, two categories of methods have been tested in Singapore to analyse urban canopy: empirically 
based models, and physically based models. While empirically based models were developed from 
experiments conducted in Singapore, physically based model rely on fundamental heat transfer and 
thermodynamic theories to assess ambient temperature, or any other weather parameter. However, both 
empirically and physically based urban climatic models still lack in interacting with higher scale climatic 
models to assess conditions at the urban boundary layer. It is thus become imperative to develop an 
integrated model for accurate prediction of weather conditions at different scales. Figure 1 illustrates 
prospects of a full climatic models and the different scales it should consider.  

1.3.  Integrating various tools of research into a single platform 
Current priorities placed on sustainable urban development have encouraged urban planners to examine 
the various parameters of urban canopy modelling and incorporate them into planning and design efforts. 
But while they may understand the importance of interactions between urban morphology and urban 
microclimate condition, they lack basic knowledge of urban climatology. Engaging urban climate 
scientists to conduct assessments and provide feedback has helped inform design and planning efforts, 
but to date the design process has been largely decoupled from the impact assessment and analysis 
process [8, 9]. 
 The integration of urban planning and design tools with urban microclimate assessment tools is a 
complex endeavour but one with a promising future. This integration will integrate urban climatic 
assessment as part of the urban design process. Urban planners will be able to assess the impact of their 
designs, i.e., the change of urban morphology, to the urban climatic condition simultaneously without 
separately engaging scientists. 
 As part of the ongoing research project, the above-mentioned platform, which is called Building 
Energy Simulation and Urban Canopy Modelling or BESCAM, will utilize Virtual Singapore (VSg), a 
three-dimensional city model of Singapore, established and developed by National Research Foundation 
(NRF), Prime Minister’s Office, Singapore, the Singapore Land Authority (SLA) and the Government 
Technology Agency of Singapore (GovTech) The aim of this Virtual Singapore project is to achieve a 
3D digital platform that will “enable users from different sectors to develop sophisticated tools and 
applications for test-bedding concepts and services, planning and decision-making, and research on 
technologies to solve emerging and complex challenges for Singapore” [10]. 
 

 
Figure 2. Workflow for BESCAM. 

 

2.  BESCAM methodology 
Figure 2 illustrates the workflow methodology of BESCAM to achieve the main objective, which is to 
develop a platform to perform energy simulation at building level by implementing UCM and using 
VSg building models, converted from BIM, as input. Currently, BESCAM is still in the early stage of: 
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• BIM conversion into CityGML 
• UCM development, and 
• Urban-scale microclimate analysis method. 

 
Hence, the following discussion focuses on those three components.  

3.  Mapping and conversion of IFC-BIM models into CityGML. 
BESCAM will use the urban geometry models from VSg, which are the converted IFC-BIM models. 
This process refers to the on-going project “Strict and automatic mapping of IFC-BIM models into 
semantically enriched 3D CityGML building models (exterior and interior)”, as seen in in which is the 
development of a methodology and algorithms to automate the mapping and conversion of IFC-BIM 
models into CityGML building models while ensuring a complete and near-lossless mapping [11]. The 
mapping will capture both geometric and semantic information as available in the IFC-BIM models, in 
order to create semantically enriched 3D city models and to extend these city models to include exterior 
as well as interior structures such as corridors, rooms, internal doors, and stairs. A formal ontology will 
be developed for both IFC and CityGML and a semantic mapping between the two data models based 
on this ontology, as part of a formal framework for strict (semantic and geometric) conversion that 
supports models to be automatically exchanged. This framework will include an identification of the 
necessary transformations to convert IFC geometry data into CityGML geometry, as well as the ability 
to assign semantic data from the IFC building model into elements of the CityGML model.  
 

 
Figure 3. The workflow from native BIM (Building Information Model) to the integration of 

CityGML models in Virtual Singapore [11] 
 
 This research will draw upon literature on formal approaches for semantic and geometric conversion 
between IFC and CityGML, and will also consider user requirements, specifically from Housing 
Development Board (HDB) and Building and Construction Authority (BCA) as collaborators in this 
project, such as the practice at HDB to convert from CityGML to the STL format to support 
computational fluid dynamics (CFD) wind simulations. While conversions from CityGML to other 
formats will not be developed within this project, requirements on a CityGML model relating to such 
conversions, such as the need to identify the relationship between a window and the wall it belongs to 
in the CityGML model, will be considered. 
 The mapping between the two data models, including the necessary transformations as identified, 
will be translated into conversion algorithms and software routines that allow a near-complete and near-
lossless automated mapping from IFC-BIM to CityGML. The completeness will depend on the ability 
to implement necessary updates to standards and specifications. The development of the conversion 
algorithms will draw upon an existing open source solution to automatically generate CityGML LoD3 
building models from IFC models. The methodology and algorithms will specifically target the 
conversion of IFC-BIM models, not BIM models in any native format as used by these BIM applications. 
Nevertheless, as BIM applications translate their BIM models into IFC, while using the same format, 
there are variations in how the models are specified in IFC. Testing with a variety of IFC-BIM models 
is meant to address these variations. 
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4.  Integration of CityGML and BIM into a physically-based urban microclimate model 
 

 
Figure 4. The proposed urban canopy modelling, which links global, urban, and building scale. 

 
After scaling down the climate variables up to city scale, a coupled scheme model is implemented as 
boundary condition to conduct building energy simulation to study the indoor energy use (see Figure 4). 
At the building scale, the simulation of building energy consumption has been the main focus, e.g., 
EnergyPlus, Revit, IES-VE, and TRANSES. By default, these detailed building energy models assume 
that the weather conditions are uniformly distributed around the reference building. Consequently, the 
external heat gain of building envelope is not properly evaluated, and the effects of shading, greenery, 
anthropogenic heat or building surface materials on ambient temperature are often neglected. Hence, the 
relationship between the outdoor and indoor air quality is also often neglected.  
 

 
Figure 5. Integration of CityGML and BIM models into a physically-based urban microclimate model 

for the assessment of weather conditions and building energy use. 
 
 CityGML and BIM models exported from the VSg platform are used to parametrize a physically-
based urban microclimate model, as illustrated in Figure 5. This model consists of a Computational 
Fluid Dynamics (CFD) model to assess weather conditions of the outdoor environment and an 
EnergyPlus model to simulate the energy use of a specific building. On one hand, information stored in 
a CityGML model, like properties of surrounding buildings and street pavements, are used to establish 
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CFD simulations of weather conditions at the urban microscale. The EnergyPlus model, on the other 
hand, is generated from the BIM model of the reference building.  
 The objective of this method is to compute weather conditions that surrounds a specific building, 
hence the building energy simulation can be conducted with proper microclimatic data for better 
estimation of heat transfer process, which determines the UHI impact on buildings. Moreover, planners 
will be able to evaluate energy savings achieved by UHI mitigation strategies that are defined within the 
urban canopy model. 
 Boundary conditions of the CFD model and EnergyPlus model are defined through a coupling 
process. While weather conditions and convective heat transfer coefficients are evaluated from CFD 
simulations, the EnergyPlus model provides estimates of the surface temperature of the reference 
building and anthropogenic heat releases caused using energy in the indoor space. Atmospheric 
conditions are in addition specified as boundary conditions of CFD simulations. They are obtained from 
the use of a mesoscale climatic model. Figure 6 shows the various components of the physically-based 
urban microclimate model. 

 
Figure 6. Physically-based urban microclimate model. 

5.  Investigation of existing temperature prediction models 

 
Figure 7. Integration processes and overview of machine learning algorithms. 

 
Data analysis is no stranger to the scientific community. Today, with the rapid development of computer 
hardware, advanced analysis algorithms such as machine learning have reached the stage of helping 
scientists solve the most difficult data analysis problems. Prediction of urban microclimate is a typical 
non-linear problem influenced by many factors including individual building, urban morphology and 
weather of city. It is a combination of multi physics phenomenon such as airflow, heat transfer, radiation 
and air pollution. Previously, Jusuf and Wong [12, 13] proposed a set of linear regression models to 
estimate temperatures based on reference weather data and urban morphology parameters at estate level. 
The models, called The Screening Tool for Estate Environment Evaluation (STEVE) was developed 
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with the intention of bridging research findings, especially those of air temperature prediction models 
and of urban planners. STEVE was initially developed as a Geographical Information System (GIS) 
plugin, then was altered into SketchUp plugin, to accommodate designers and users that is more 
accustomed with SketchUp’s 3D modelling environment. 
 The air temperature prediction models can calculate the daily minimum (Tmin), average (Tavg) and 
maximum (Tmax) temperature of each point of measurement based on climate predictors and urban 
morphology predictors. The climate predictors are daily minimum temperature (Tmin-r) at reference point, 
daily average (Tavg-r) temperature at reference point, maximum (Tmax-r) temperature at reference point, 
average of daily solar radiation total (SOLARtotal), and average of solar radiation maximum 
(SOLARmax); while the urban morphology predictors are percentage of pavement area over surface 
area (PAVE), average height to building area ratio (HBDG), total wall surface area (WALL), Green Plot 
Ratio (GnPR), SVF and average surface albedo (ALB) [14].  

   
(a) (b) (c) 

Figure 8. Learning curves of linear regression model of original STEVE tool: (a) Average temperature 
prediction; (b) Minimum temperature prediction; (c) Maximum temperature prediction. 

 
 In this part of the research project, the goal is to enhance STEVE tool using state-of-the-art machine 
learning algorithms (Figure 7). Python was selected as programming language because of extensive 
support libraries and user-friendly data structures. In addition, the open source machine learning library 
Scikit-Learn [15] was utilized since it is accessed from Python and covers a wide range of machine 
learning algorithms. The preliminary investigation was organized as follows. First, cross-validation re-
evaluated the original STEVE tool to predict the performance of the algorithm on the unseen data. Then, 
several machine learning algorithms were selected from the Scikit-learn and tested on the weather data. 
Finally, the optimal algorithm was chosen based on accuracy and improvement potential.  

   
(a) (b) (c) 

Figure 9. Comparison Of machine learning algorithms' testing error performance: (a) Average 
temperature prediction; (b) Minimum temperature prediction; (c) Maximum temperature prediction. 

 In the beginning, the prediction accuracy of original STEVE tool was evaluated by the repeated K-
fold cross validation [16] which was algorithm-based method used to evaluate the algorithm’s prediction 
performance on unseen data. Learning curves of train and test error are commonly used in machine 
learning to evaluate the algorithm’s response to the data size [17]. Based on the learning curves (Figure 
8), it was found that the original linear model had mean absolute error (MAE) of the test data ranging 
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from 0.3 to 0.6 ℃. Considering the small difference of daily air temperature in Singapore, the error was 
quite significant. In addition, the training and test curves converged at full-scale data meaning providing 
more training data was not useful for improving model accuracy. Therefore, there was a need to find 
better algorithms for estate level air temperature prediction. 
 Afterwards, multiple machine learning algorithms were tested to find the optimum model for the 
prediction of urban microclimate (Figure 9). The results show that machine learning algorithms such as 
support vector machine (SVM) and k-nearest neighbour (KNN) were not suitable for temperature 
prediction while tree-based algorithms such as decision trees or random forests outperformed linear 
regression in predicting the air temperature. The reason may be since tree-based algorithms are better at 
discrete attributes that exist in the collection of urban morphology data. 
 

   
(a) (b) (c) 

Figure 10. Learning curves of random forest model: (a) Average temperature prediction; (b) 
Minimum temperature prediction; (c) Maximum temperature prediction. 

 
 Random forest [18] had low bias on the prediction results that error was reduced around 50% 
compared to linear model (Figure 10). Moreover, learning curves were not converged suggesting a space 
for model improvement. In the next stage, we will further enhance random forest model by adding more 
training instance, adding more features, doing feature selection or hyperparameter optimization.    

6.  Future work 

6.1.  Developing model of interactions between urban microclimate and building energy use 
Various improvements were achieved in the development of a physically-based model to simulate 
interactions between urban microclimate and building energy use; this platform will be called UMBER. 
First, the domain object model, that is the structure of data to be stored and manipulated in the UMBER 
model, was defined such as determining what information will be required from CityGML and BIM 
models. To facilitate the integration of CityGML and BIM models into the physically-based model, an 
appropriate software architecture was thought making a good use of software design patterns. The 
software architecture being implemented aims at including High Performance Computational (HPC) 
resources to minimize the runtime of simulations of the model. 
 The software architecture of the UMBER simulation engine is primarily composed of front-end and 
back-end components. The front-end consists of the Core software component of the simulation engine, 
which will be implemented in MATLAB and running in a Windows environment. The Core component 
will essentially be responsible of synchronizing and processing the inputs/outputs of the EnergyPlus 
model of the reference building through the BCTVB middleware. A Java client will be developed for 
the Core component to communicate with the back-end application, which is meant to be running in an 
HPC. For this reason, python and Linux are the technology used to develop the back-end application. 
To synchronize and process inputs/outputs of OpenFOAM simulations of urban microclimate 
conditions, an UMBER-server component is being implemented. Figure 11 summarises the software 
architecture of the UMBER simulation engine. 
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Figure 11. Software architecture of the UMBER simulation engine. 

6.2.  Temperature prediction models 
In the next stage, the air temperature prediction model will go through the optimization processes. The 
objective is to minimize the discrepancy caused by the model rather than the training data. As discussed 
in the previous sections, machine learning model can be further improved if the learning curves are not 
converged at the full size of the data. Normally, there are four approaches available for optimization 
including increase of data size, increase of input feature, input feature selection, and hyperparameter 
tuning.  
 First, feature selection will be conducted to select the most relevant features for the prediction model. 
Recursive feature elimination, F-regression and mutual information are three techniques commonly used 
to test the correlation of each feature with the outcome variable. The hyperparameters of the random 
forest algorithm will be optimized after feature selection. In machine learning, hyperparameter refers to 
the parameter whose value is set before the learning process begins. The search of optimal 
hyperparameter of a learning algorithm is to minimize a predefined loss function. Potential candidates 
of tuning approach are grid search and random search coupled with cross validation. Although machine 
learning model is evaluated using cross validation, the research group will provide another validation 
data set which is completely outside the original training and testing data to double verify the model 
accuracy.  

 
Figure 12. Two processes for optimization of machine learning model 

7.  Conclusion 
As BESCAM is still in the development process, this paper highlights some of the important components 
and fundamental methods on urban canopy modelling integration with building energy performance. 
Compared to what has been achieved in the other studies, the BESCAM platform would offer a unique 
opportunity to local architects, engineers, and scientists to use the same source of information, using 
VSg database, for conducting their own analysis and compare their conclusions. Furthermore, this 
platform would simulate weather conditions from the city scale to the building scale taking into 
consideration major anthropogenic heat sources.  
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