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Abstract: Approach to the solution of a problem of optimal power and resource-intensive 
process design under uncertainty is proposed. The problem has a form of one-stage 
optimization problem with separate chance constraints. The approach based on the problem’s 
functions approximations and approximations of the regions of the constraints satisfaction. 
This allows us to avoid calculation of multiple integrals. Thus we reduce the problem of 
stochastic nonlinear programming to the sequence of the usual problem of nonlinear 
programming.  

Intrduction 
Generally, power and resource-intensive processes are designed with the use of uncertain source data 
and  inaccurate mathematical models. The inexactness of mathematical models arises because of the 
original uncertainty of chemical, physical, and economic data which are used during a process design. 
Therefore, it is important to design a process that guarantees the satisfaction of all design 
specifications either exactly or with some probability. This paper considers the issue of power and 
resource-intensive process optimization when at the operation stage the design specifications 
should be met with some probability and the control variables can be changed. 

The optimization problem of a optimal process design in the case of the using an exact 
mathematical model and uncertain source data can be expressed as follows 

 ),,(min
,

θzdf
Hzd ∈

  

 ,,,...,1=0,),,( Tmjzdg j ∈∀≤ θθ   
where  d  – dn -vector of design variables, z  – zn  of control variables, and θ  – θn -vector of 
uncertain parameters, Т∈θ , the region },...,1,:{ θθθθθ niT U

ii
L

ii =≤≤=  characterizes the changing 
of the operating conditions of the designed process (DP) for the operation period, ),,( θzdf  –  the 
function of evaluation  of the operational efficiency of the designed process at a time that appropriate 
to the operating conditions of the designed process, specified values of uncertain parameters θ . We 
cannot solve this problem due to an exact values of uncertain parameters θ . 

The problem of the optimal design of a process under uncertainty can be formulated as follows: it 
is necessary to create an optimal process that would guarantee the satisfaction (exact or with some 
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probability) of all design specifications in the case when inexact mathematical models are used and 
internal and external factors change during the process operation stage. Usually, the following two 
formulations of this problem are used:  
– the formulation of the two-stage optimization problem (TSOP) takes into account possibility of the 
control variables change at the operation stage. Here, we suppose that at each time instant during the 
operation stage (a) values of all or some of the uncertain parameters can be either measured or 
calculated using the experimental data (thus at each time instant the process model is corrected) and 
(b) during the operation stage, the control variables are adjusted depending on a process state. This 
formulation can be used if it is possible to accurately estimate all or some of the uncertain parameters 
at the operation stage of process. 
– the formulation of the one-stage optimization problem (OSOP) supposes that the control variables 
are constant at the operation stage.  

The formulation of the optimization problem under uncertainty depends on the type of constraints. 
The constraints can be “hard” or “soft”. Hard constraints must never be violated during the operation 
stage. Conversely, if occasional violations are allowed then the constraints are said to be soft. We 
consider methods of solving the one-stage optimization problems with chance constraint (OSOPCC) 

1. General formulations 
Let write OSOPCC with the expected value of the function ),,( θzdf  criterion during the process 
operation stage in the form [2] 

)],,([min
,

θθ zdfE
Hzd ∈

, (1) 

jj zdg αθ ≥≤ }0),,(Pr{ , mj ,...,1= ,   (2) 

where jj

j

dzdg αθθρθ ≥=≤ ∫
Ω

)(}0),,(Pρ{ , 10 ≤≤ jα , },0),,(:{ Tzdg jj ∈≤=Ω θθθ , 

∫=
T

dzdfzdfE θθρθθθ )(),,()],,([ ,  )(θρ  – is the probability density function. 

The solution of problem (1)-(2) requires multidimensional integration to calculate the values of 
constraints (2) and the criterion in (1) at each iteration of the procedure for solving problem (1)-(2). It 
is computationally time-consuming operation even in the case of a small number of uncertain 
parameters. Currently, there are proposed a number of approaches for the economic calculation of 
multidimensional integrals that can be grouped into three groups: 

1. Approaches based on the development of Gauss quadratures. Unfortunately, these approaches 
require extremely large computations with increasing dimension of the integration region. 

2. A group of approaches developing ideas for methods of statistical testing. The most advanced 
approach in this group is currently the method of approximation of the sample-average approximation 
(SAA) [3]. However, these methods in turn use random variables, and such solution can lead to chance 
constraints violation. 

3. Methods for the transformation chance constraints to deterministic form, which allows to 
exclude the multidimensional integration procedure. Among the methods of this group, methods for 
transformation linear constraints are known [4], approaches based on certain properties of constraint 
functions [5]. There are methods that use known inequalities in the transformation of constraints. 
However, such methods either impose certain requirements to the form of constraint functions, or still 
require multidimensional integration. 

An overview of the approaches to the solution of the OSOPCC is given in [6]. 

2. Proposed approach basics 
In [2, 7] we proposed an approach to the solution of OSOPCC (1)-(2) for independent indefinite 
parameters, based on our proposed method of reducing chance constraints to a deterministic form that 
does not depend on the form of the constraint functions and does not require multidimensional 
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integration. However, the proposed approach required an analytic transformation of the functions of 
chance constraints, which is not always possible and convenient. In this paper we consider the 
development of the approach proposed in [2, 7], which allows to avoid preliminary analytical 
transformations. 

2.1. Expected value quantity approximation 
To reduce the computations for multidimensional integration for getting the value of the criterion for 
the problem (1)-(2), in [2] we used at the k -th iteration of the solving procedure the approximation of 
the value )],,([ θθ zdfE  by a function )],,([)( θzdfE k

ap , relying on the expansion of the function 
),,( θzdf  
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The proposed approximation does not require the calculation of multidimensional integrals. To 

calculate it, one-dimensional integrals values are required. However, the values of these quantities can 
be obtained before the optimization procedure because the integration elements are independent of the 
search variables of the problem. 

2.2. Approximation of the chance constraints satisfaction region 
In [7] we proposed a method for reducing the chance constraints (2) to a deterministic form by 
approximation the 

j
Tα  regions of satisfaction of constraints 0),,( ≤θzdg j  by multidimensional 

rectangles 
j

Rα . For this, the hypersurfaces of the boundaries of the regions 
j

Tα  obtained by the 

expression ),...,,,( 11 −=
θθ

θθϕθ nϕn zd  from the equations 0),...,,,( 1 =
θ

θθ nj zdg  were approximated by 

hyperplanes ),...,,,( 11 −θ
θθϕ nϕ zd , )(5.0 L

i
U
ii θθθ −⋅= , 1,...,1 −= θni ,. As a result, we get the 

formulation of the problem of evaluation the criterion of the OSOPCC (1)-(2) in form (see [7]) 
)],,([min )(

,
θzdfE k

apHzd ∈
  (3) 
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i
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dispersion of parameter iθ , 
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)(,...,1 k
jNl = , obtained by partitioning the regions 

j
Rα  to improve the approximation of the functions 

),...,,,( 1 θ
θθ nj zdg , θni ,...,1= , mj ,...,1= . In (4) )],...,,,(;[ ,
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i θθθ += , 1,...,1 −= θni . The calculation of one-dimensional integrals ljnI ,,θ

 is 
conducted according to the expressions: 
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However, to calculate the values )(
,
k
ljj , we need to express them from the equations 
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 in the subregion ljR , , that is not always possible. Therefore, we will 

receive values )(
,
k
ljj  during the execution of the optimization procedure. Let introduce the equations 

into the number of constraints of problem (3)-(4), add variables to the list of search variables of the 
problem )(

,
k
ljj  and obtain a new form of problem (3)-(4) 
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where the calculation of ljnI ,,θ
 is conducted according to (5). In the problem )(k

jmN  of equality 
constraints of the form (7). 

Note that in problem (6)-(8) it is assumed that for getting value )(
,
k
ljj  is used the dependence 

),...,,,( 11 −=
θθ

θθϕθ nϕn zd  in the subregion ljR , . However, it is not always convenient and rational to 
use the same undefined parameter for getting the value for various constraints 0),,( ≤θzdg j , 

mj ,...,1=  when  we solve the process design problems. Obviously, it can be used different undefined 
parameters for different constraints. 

Let suppose that for getting a value )(
,
k
ljj  for a constraint with a number j , we will use an 

undefined parameter with the number ji , and can be executed 
21 jj ii = . In this case, the problem (6)-

(8) takes the form 
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where },{ ,
j

lj
ij Ii∈=Θ θ , }/{},...,1:{ jj iiniiI === θ , θnI j =dim . 

The problem (9)-(11) is the problem of non-linear deterministic programming. To solve this 
problem, it is not necessary to conduct multidimensional integration in the process of implementing 
the optimization procedure. It is also not necessary to separately solve the equations 

0),,...,,,( ,
,

1
,

1 =− lj
lj

n
lj

j zdg jθθ
θ

 for each region to get a value. It should be noted that the derivation of 
the equations for the optimization level will allow us to get a faster solution of problems (9)-(11). 

3. Improving chance constraints regions approximation 
To improve the getting evaluation, we can use the partitioning rules for the regions qT , )(,...,1 kQq = , 

ljR , , mj ,...,1= , )(,...,1 k
jNl =  that proposed in [2, 7]. Let )()( , kk zd  is the problem (9)-(11) solution. 

We should partition the subregion *qT  with the worst quality of the approximation of the function 

),,( θzdf  by the function ),,,( qzdf qq . To find the *q  we will solve the problem 
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The effectiveness of the proposed approach was demonstrated on the solution of the problem of 
synthesis of the optimal workable one-stage of heat exchangers network (HEN). To reduce the 
dimension of the solving problem was used an approach to the synthesis of optimal HENs, proposed in 
[8].  

The using of the approach became possible due to the decomposition of the multidimensional 
region of uncertainty into a set of two-dimensional regions. As a result, a set of problems of optimal 
workable HENs design on two-dimensional regions of uncertainty was obtained. By solving each of 
the problems of optimal workable HENs design, the level of the HEN heat and mass balance is 
realized in the modeling program UNISIM (Honeywell International Inc.).  

The obtained optimal values of the criteria of effectiveness work of each of the operational 
networks were summarized in the matrix of effectiveness evaluations of networks [8]. The optimal 
topology of the workable HEN was obtained as a result of the solution of the assignment problem, and 
the problem did not contain uncertainty, it was exhausted at the level of solving separate problems of 
optimal workable HENs design. 

Conclusions 
In this paper we propose the development of the approach that we proposed earlier to solve the 
optimal workable CP design problems based on reducing the problem of a one-stage optimization 
problem with separate chance constraints to a sequence of deterministic nonlinear programming 
problems.  

The new approach makes it possible to get rid of the procedure of the analytical solution of 
nonlinear equations describing the boundary of the region of satisfaction of constraints, which made it 
possible to approximate the constraint functions when reducing chance constraints to deterministic 
form. The elimination of this procedure was made possible by including these equations in the list of 
constraints of the solving optimization problem. This made it possible to extend the scope of the 
approach to cases where the analytical solution of the equations is very difficult or impossible, for 
example, when modeling programs are used to reduce the heat and mass balances of CP.  

The efficiency of the approach was demonstrated on the solution of the problem of synthesis of an 
optimal workable one-stage of heat exchangers network, when the heat and mass balance of the 
network was calculated in the simulating program, which did not allow to obtain analytical 
descriptions of the boundaries of the regions for satisfaction of the chance constraints of the solving 
problem. 
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