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Abstract. When hydroturbines operate at part load or over load, intense pressure and vibration 

pulsations may occur. One of the instability mechanisms is due to the presence of a cavitation 

bubble (or cloud) behind the runner. Chen et al. [1] the phenomenon is modeled using the 

concept of cavitation compliance. They demonstrated the destabilizing effect of the diffuser 

and swirl. In the present work, the influence of two factors on the coefficients of the 

characteristic equation, whose solution yields natural frequencies and oscillation increments, is 

revealed. They are the vorticity distribution and the size of the cavitation cavity behind the 

runner. It is shown that the effect of swirl on stability is much smaller than that described in [1] 

and rapidly decreases with the growth of cavitation bubble size. 

1.  Introduction 

Unsteady phenomena in the hydraulic part of a hydroturbine are one of main and actual problems of 

hydropower aggregates design, construction and operation. The description of these phenomena is 

complicated by the possibility of cavitation zones and the involvement of air in the water flow. 

Considerable progress in modeling the instability due to the presence of the cavitation / air area 

behind the turbine runner was achieved by Chen et al. [1]. The authors used the concept of cavitation 

compliance and revealed the destabilizing effect of the diffuser and swirl. The same authors [2], 

considering the finiteness of the sound speed in the penstock, found the appearance of high-frequency 

instabilities. It follows from [1, 2] that changing the volume of the cavity, the parameters of the 

diffuser and the swirl intensity can control the stability of the flow and its eigen frequencies. At the 

same time, experimental studies [3] clearly demonstrate the effect of the gas phase on the pulsation 

characteristics in a vortex chamber with a precessing vortex. During transition from pure liquid to a 

two-phase flow, the precession frequency decreases sharply. With a further increase in the gas supply, 

the frequency increases monotonically. Based on the helical vortex model [4, 5], where analytical 

formulas for the precession frequency and the amplitude of pressure pulsations are derived, as well as 

analysis of the experimental data, a semi-empirical model is constructed to describe the dependence of 

the frequency and amplitude of pressure pulsations on the gas content [6]. 

It should be noted that when modeling instability, the authors of [1, 2] incorrectly interpret the 

Bernoulli equation and do not take into account the effects of swirl cavitation on the pressure 

distribution behind the turbine runner. 
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The aim of this paper is to develop models of the vortex flow of a fluid taking into account 

cavitation and to assess the effect of the vapor phase and swirl on the development of instability in the 

draft tube of a hydroturbine. 

2.  An analytical model for the instability description  

Consider a system consisting of a penstock of length Li and cross-sectional area Ai, a turbine runner 

(TR) and a draft tube (DT) with the area of the inlet and exit sections Ac and Ae, respectively (see 

figure 1). We assume that behind the turbine, at the entrance to the DT a cavity of volume Vc is 

formed. Chen et al. [1] derived two equations for flow rate and pressure in the system. The first 

equation, the continuity equation, presents the relationship between the flow rate in the penstock Q1 

and the flow rate in DT Q2 
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The second equation links the pressure at the system inlet, pi, with the exit pressure, pe 
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In the system (1) – (2) the following denotations are introduced:  is the liquid density;  

C = –∂Vc/∂pc is the cavitation compliance; Le = ∫(Ae A(s))ds is the DT effective length; 

D = (Ae Ac)2 − 1 is the diffusor factor, 2 is the DT loss factor. 2 is assumed to be constant, although, 

strictly speaking, it can depend on the degree of swirl of the flow in the DT [7]. At a fixed rotation 

speed of TR and opening of the guide apparatus, the turbine is considered as a resistance with a 

constant loss factor T, which depends on the opening of the guide device. The last term of equation 

(1) contains the coefficient  - the pressure coefficient responsible for the swirl effect. Its definition 

will be discussed in the next section. 2 denotes the angle of inclination of the blade at the exit from 

the TR, S is the area of the outlet cross-section of the TR, and U2 is the peripheral velocity at the exit 

from the TR. In this case, the characteristic circumferential flow velocity at the outlet from the TR is 

c 2 = (Q1/S) cot 2 – U2 

The second term on the right-hand side of equation (1), proportional to dQ2 dt, describes the effect 

of the diffuser on the flow rate coefficient. With the increase in flow Q2 the ambient pressure pa is 

lowered if the diffusor factor D is greater than the loss 2. The volume of the cavity increases. The 

second term on the left, proportional to dQ1 dt, presents the swirl effect. This term can also be called 

the "flow rate coefficient", but this term is related to the flow rate Q1 in front of the cavity. At flow 

rates Q1 higher than U2S tan 2, the tangential velocity c 2 and the cavity volume increase with 

increasing Q1. The opposite result occurs at lower flow rates. Note that the left and right sides of 

equation (2) coincide with the pressure behind the runner pa. 

 

Figure 1. Scheme of the hydraulic part of the hydroturbine. 
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Equations (1), (2) are the basic equations for determination Q1(t) and Q2(t). For stability analysis, 
let us represent ( )1 1 1Q Q Q t= + , ( )2 2 2Q Q Q t= + and assume that ( )1 1Q Q t , ( )2 2Q Q t . It is 
obvious that 1 2Q Q Q= = , so the unsteady parts of the equations (1), (2) can be written down as 
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Next, we represent the nonstationary functions 
1 2,Q Q in the form 

1 1,0

i tQ Q e = , 
2 2,0

i tQ Q e = , where i 
is the imaginary unit. Substituting these expressions into equations (3), (4), we obtain a system of 
homogeneous linear equations with respect to 1,0Q , 2,0Q . Equating the determinant of the matrix of this 
system of linear equations to zero, we obtain the characteristic equation (5): 
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(5) 

Equation (5) is an equation of the third order with respect to (i) with real coefficients. From it we 
can find the complex frequency  = R + iI. The real part, R, is the frequency, and the imaginary 
part, I, is the damping rate (decrement) of the perturbation. If 1 = 1R + i1I is a solution of equation 
(5), then 2 = −1R + i1I is the second solution. Solutions 1 and 2 are essentially the same solution 
with the same frequency and decrement. The real part of the third solution is equal to zero, 3R = 0. 
Thus, we have three solutions: 1 = 1R + i1I, 2 = −1R + i1I, 3 = i3I. 

3. Modelling the pressure distribution behind the runner
At certain flow parameters, a steam, air-steam or air cavity may appear behind the turbine runner. We
will be interested in partial or forced loads, when the flow at the inlet to the draft tube is swirled.

To study cavitational flow in the draft tube we will follow to paper [8], where models of axi-
symmetrical vortices introduced in [4, 9, 10] were considered. At a given distribution of vorticity the 
problem on determination of the circumferential, u, and axial, uz, velocity components have been 
reduced to the integral of the vorticity z(r).  
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Here  is the total intensity of the vortex, 2l is the pitch of helical lines, u0 is the value of axial 
velocity at the vortex axis. The pressure has been found by integration  
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where p0 is the pressure at the vortex axis. For convenience we introduce a non-dimensional vorticity 
and pressure drop  
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where  is the typical size of the vortex. 
Three examples of the vorticity distributions were considered in [8]: uniform (model I), fractional-

power (model II) and Gaussian (model III) distributions (see table 1). 
In a liquid, when the pressure becomes less than the liquid vapor pressure, a cavitation bubble 

arises in the near-axis area of the vortex. The model supposed that cavity does not change along the 
vortex and its boundary coincides with the iso-surface of pressure equal to the liquid vapor pressure.  

To apply the formula for pressure (7) it is necessary to know the constant p0. To find it let’s write 
down the pressure averaged over the DT entrance cross-section through the Bernoulli’s integral  

2 2m tw s mp p gH U = − − . 

Here ptw is the tail water pressure that is equal atmospheric one, Hs is the difference of heights between 
the inlet cross-section and the tail water level, Um is the flow rate mean velocity, g is the acceleration 
due to gravity. From other hand we calculate the pressure averaged over the cross-section  
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The integration is performed over circular cross-section of radius R. The derived correlations for

( )2 2 1 2
0 08m mp R p p   − −= − and ( )2 2 1 28Rm R mp R p p   − −= − for three considered vortex

models are presented in table 1. Taking pmv = pm we find the pressure p0 from equation (7) and when 
p0 is less than the water vapour pressure pwvp, a cavitational bubble arises. The pressure profile 
changes, its minimum becomes flat and instead formula (8) one has new equation: 
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where rc is the radius of cavitation bubble and pc is the pressure inside cavity. 
In papers by Chen et al. [1, 2] the core pressure pc was expressed through the ambient pressure pa 

and the peripheral swirl velocity behind the runner, i.e. u (R): 

2
c a Rp p u= − . (11) 

For the Rankine type vortex with the core radius  it was stated that  = (R/)2 – 1/2. Indeed, from 
table 1 for model I we find pressure at the tube wall  
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. 

If we consider the ambient pressure equal to the wall pressure, pa = pR, the cavity pressure equal to 
the pressure at the flow axis, pc = p0, then in view of value of the peripheral swirl velocity, 
u (R) =  /2R we obtain the same value of the coefficient . Note that Bernoulli’s equation yields some
averaged pressure in the cross-section rather than pressure on a wall. To find the averaged pressure we
integrate formula (11) over the tube cross-section
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The corresponding formulae for ( )2 2 1 28mc m cp R p p   − −= − are shown in the last line of table 1.
There are three functions introduced: 
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Table 1. Characteristics of three models of axi-symmetrical vortices. 

Model I II III 
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Formula (12) can be considered as the equation for determination of the cavitational bubble radius at 

given mean pressure and intensity of the vortex. For the model I integration yields an equation which 

was previously derived by Wang et al. [11]. This be-quadratic equation can be simply resolved for rc. 

Finally, in view of equations (6, 11) we derive the following formula for the pressure coefficient of swirl 

( )
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2 3

2
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
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c c

R r

r r

dr
r rdr

rR
. (13) 

Obviously, the  values can be found, accordingly to equation (13), from the last line of table 1 and 

values of (r) taken at r = R. In particular, for model I one has 

4 2 2 2 2
I

4 4 2 2

3 1
ln

4 24 2

c cr r R R R


   
= − + − − . (14) 

In the numerical results described in [1] authors took  = (R/)2 – 1/2 = 10 i.e.  ≈ 0.3086 R. Thus, 

yet at very small cavity size at given  to R ratio we will find from equation (15) value of  ≈ 8.57 

instead of 10. This means that swirl effect is essentially less than described in papers [1, 2]. Moreover, 

equation (15) shows that the coefficient  decreases with cavity size growth: from 8.57 at rc = 0 to 

3.57 at rc =  (see figure 2). For models with smooth vorticity distributions the influence of swirl is 

found to be yet less. In case of model II for cavity radius we have transcendent equation of type 

x – ln x = a. This equation at a = 1 has a single root x = 1. At a > 1 there are two branches with x < 1 

and x > 1. We are interested in the upper branch and solution can be obtained numerically. Note that at 

x >> 1 the approximate solution is x ≈ a + ln a.  
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The coefficient  for model II 
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. (15) 

changes from 4.83 to 1.80 when the cavity radius grows from 0 to . For the third model the 

coefficient  changes from 5.66 to 2.41 for rc varying in the interval [0, ]. The corresponding 

dependencies of the cavitational bubble radius and the cavitation compliance on mcp  were presented in [8]. 

An example of calculation of the disturbances frequencies and increments in dependence on flow 

rate for model II and different cavity size are shown in figures 3, 4 (/R = 0.5). At zero cavity size 

periodical oscillations are possible at Q < 0.566 or Q > 0.690. The wider the cavity the larger the 

range of flow rates where the oscillations absent.  

 
2

R

nf



 2

I

nf





 – 

– 

 – 

– 

 – 

– 

rc /  Q Q

Figure 2. The pressure 

coefficient of swirl vs the 

cavity radius. 

Figure 3. The frequency of 

unstable disturbances vs flow 

rate. 

Figure 4. The increments of 

unstable disturbances vs flow 

rate. 

4. Conclusion

In the paper influence of the cavitational bubble size and type of vorticity distribution on low-

frequency oscillations is analyzed. A weaker influence of swirl on the stability conditions is shown in

comparison with known literature data. This influence decreases with gas/vapor cavity growth. New

data on instability characteristics of cavitating flow behind the hydroturbine runner are obtained.
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