
IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

On Dynamic Constitutive Model of Granite Under Impact Loading: Effect
of Damage on Dynamic Strength
To cite this article: Shufeng Liang et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 283 012019

 

View the article online for updates and enhancements.

This content was downloaded from IP address 47.110.130.152 on 24/09/2019 at 10:36

https://doi.org/10.1088/1755-1315/283/1/012019
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/224088218/Middle/IOPP/IOPs-Mid-EES-pdf/IOPs-Mid-EES-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ESCE2019

IOP Conf. Series: Earth and Environmental Science 283 (2019) 012019

IOP Publishing

doi:10.1088/1755-1315/283/1/012019

1

 

On Dynamic Constitutive Model of Granite Under Impact 

Loading: Effect of Damage on Dynamic Strength 

Shufeng Liang*, Tianlong Ling, Dianshu Liu and Shenglin Li 

(School of Mechanics & Civil Engineering, China University of Mining and 
Technology (Beijing), Beijing 100083, China) 

Corresponding author. Tel.:+86 13426072162. Email: liangsf204@163.com 

Abstract. Dynamic mechanical properties of granite were tested by a split Hopkinson pressure 

bar system at constant strain rates. The experimental results show that granite behaves linearly 

elastic at the initial loading stage, followed by a significant plastic deformation after yielding, 
and yield strength, ultimate strength and elastic modulus are all rate dependent. On this basis, 

the simplified Zhu-Wang-Tang (ZWT) constitutive model is applied in this paper, assuming 

elastic and high frequency viscoelastic elements only. The damage evaluation equation is 

introduced to the simplified ZWT model to investigate the effect of damage on the dynamic 

strength of granite due to impact load. Finally, the proposed model is applied to fit the 

experimental data. It is known that the fitted stress-strain curves at different strain rates are in 

agreement with the experimental ones. Compared with experimental data, the error of yield 

stress, peak stress and corresponding strain obtained by fitting method are all not larger than 

10%. This demonstrates that the proposed dynamic constitutive model can accurately describe 

the dynamic mechanical properties of granite under impact loading. 
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1. Introduction 
Dynamic loadings, such as blasting and impact, lead to a different rock deformation mechanism, 

compared to hydrostatic loadings. In the past sixty years, dynamic mechanical properties of rocks have 

drawn much attention and a large number of experiments have been performed to investigate rock 
behavior under impact loadings [1-7]. Due to the complexity of rock properties and the transience of 

dynamic loads that were employed in experiments, the stress-strain curves obtained from the 

experiments generally demonstrate diverse mechanical behavior, which may not be representative and 

therefore not be useful for engineering. In order to better understand the mechanical properties and 
failure mechanism of rocks under dynamic loadings, it is of great practical significance to construct a 

constitutive model which can describe the dynamic properties of rock materials reasonably and 

succinctly. 
At present, many achievements have been made in the dynamic constitutive theory of rocks. Based 

on the results dynamic mechanical properties, Kinoshita Shigenori et al. [8] suggested that Bingham 

model (i.e. overstress model) can be used to describe the dynamic mechanical properties of rock. On 
this basis, Yu et al. [1] proposed a modified overstress model, and determined the constitutive 

parameters for different rocks, which have clear physical meanings. However, the modified overstress 

model could not describe the characteristic variation of elastic modulus with the loading rates. Zheng 

et al. [9] introduced the damage variable into the viscoelastic constitutive model. In this model, the 
rate dependent strength and elastic modulus can be described by the use of parallel Maxwell models at 



ESCE2019

IOP Conf. Series: Earth and Environmental Science 283 (2019) 012019

IOP Publishing

doi:10.1088/1755-1315/283/1/012019

2

different relaxation time. However, the model may be too complex for engineering practice, as many 

parameters in the model need many experiments to determine. Based on analysis of measured dynamic 

constitutive curves, Shan et al. [10] proposed a time dependent damage model for rock properties 

under dynamic loading, involving a statistic damage model and a viscoelastic model. Zhao et al. 
[11-12] modified the Zhu-Wang-Tang model by replacing the elastic component with damage model to 

establish a damage viscoelastic dynamic constitutive model. 

In this paper, we report experimental data on stress-strain behavior of granite under impact load, 
employing strain rates 19.1/s-190.5/s. The experiments were performed using SHPB system at 

constant strain rates. Based on the experimental data, we simplify the ZWT model and construct a 

damage dynamic constitutive model that considers the effect of damage on the rock failure under 

compact loadings.  

2. Split Hopkinson Pressure Bar Test 

The granite samples used in this study were collected from a quarry located at Changping district, 

Beijing. The cylindrical specimens were made from the granite blocks using a diamond drill. The 
samples used in the experiments are 50mm in diameter and 40mm in length. Both end surfaces were 

finely polished to ensure that the roughness did not exceed 0.02mm. 

The experiments are performed at constant strain rates using a special designed Hopkinson 
system in the SHPB laboratory, China University of Mining and Technology (Beijing) [14]. Compared 

to the conventional split Hopkinson pressure bar, a cone-cylinder striker is designed in our system to 

ensure a better control of constant loading [13,14]. The striker is made of 7075 aluminum-magnesium 

alloy whose wave impedance is close to that of the granite specimens used in the experiments. The 
diameters of two end surfaces of the striker are 35mm, 50mm, respectively, and the length is 400mm. 

The diameters of incident bar and transmission bar are both 50mm and the length are 2000mm. The 

schematic diagram of the SHPB system used in this paper is shown in Fig. 1. 

Striker Incident bar Transmission bar Absorption barSpecimen

Strain gauge

Analyzer

Pulse shaper

Velocimeter

Stopper

Gas gun

barrel

 

Figure 1. Schematic diagram of SHPB experimental system 

3. Dynamic Mechanical Properties of Granite 

3.1. Dynamic Mechanical Analysis 

In order to study the mechanical response of granite at different strain rates, the uniaxial impact tests 

were conducted on granite samples at 26 impact velocities, which demonstrate 130 experimental data 
sets in final. The experimental data covers the strain rates from 19.1/s to 190.5/s. Fig.2 is the 

stress-strain curves of granite specimens tested at constant strain rates of 39.1/s, 67.6/s, 100.1/s and 

131.9/s. As shown in Figure 2, the granite samples show linearly elastic behavior in the initial stage 

that strain is lower than 0.0005. It also shows, in the early (elastic) stage, the higher the stain rates, the 
better the linearity and the larger the dynamic elasticity modulus, in general. As strain rate is higher 

than 100/s, the stress fluctuates several times after the onset of the plastic deformation of the sample. 

This finding is consistent with the conclusion drawn by Shan et al. [4]. In the strain range of 
60/s-190/s, the sample behaves as the ideal plasticity. The yield stress increases with an increase of 

strain rate, indicating that the granite exhibits obvious work hardening behavior. 
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Figure 2. Stress-strain curve of granite specimens 
 

Dynamic peak stress of granite against strain rates is shows in Fig. 3. The peak stress of the 

samples increase with the increase of strain rate, showing a significant rate dependence. It is found that, 

in the range of strain rate tested (19.1/s-190.5/s), peak stress may be well fitted to a power law of 
strain rates (see Figure 3). The fitted relation yields: 

0.0242547 2385                            (1) 

Figure 4 shows the peak strain measured at different strain rates in the experiments. The peak strain 

increases with the increase of the strain rate, yielding a linear relation that can be expressed as  

3=(10.7 0.082 ) 10                           (2) 

 

Figure 3. Peak stress - Strain rate curve 
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Figure 4. Strain rate- strain relationship 

3.2. Damage Evaluation of Granite 
Defects in rock materials may lead to the damage softening effect, and therefore the internal damage 

and its evolution may play a role in mechanical properties of rocks under impact loads. Recently, 

many variables have been proposed to describe the extent of damage. For engineering application, 
damage variable is generally defined at a macro level, that is, the macroscopic parameters of rocks are 

measured to evaluate the extent of damage. These macroscopic mechanical parameters include 

elasticity modulus, acoustic velocity, and density, etc. In this paper, we use the reduction of acoustic 

velocity of rock to characterize damage, yielding 

2

p

2

p

1
V

D
V

                                 (3) 

Where p
V  is acoustic velocity of intact rock materials, and p

V  is the acoustic velocity of damaged 

rock materials. 

The acoustic velocity of intact granite samples and damaged granite samples were measured, 

respectively, by means of a RSM-SY5 instrument. Inserting the obtained values into equation (3), we 
obtained the values of the damage variable (D) for the samples at different strain rates. The damage 

values versus different peak stress are plotted in Fig. 5. It is shown that the damage value increases 

with the increase of peak stress, maybe yielding an exponential function expressed as 

=0.144exp( ) 0.332
60.19


D                        (4) 
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Figure 5. Relationship between granite damage and peak stress 

 
It can be seen from equation (4), that  =50.2MPa, as D=0, indicating that if the peak stress caused 

by impact load is less than 50.2MPa, the granite sample will not be damaged. Similarly, if the peak 

stress exceeds 133.9MPa, i.e. D equals to 1, the granite sample will be fractured completely. On this 

basis, we define a peak stress threshold for damage as 0 =50.2Mpa. Following the same approach 

and using equations (3) and (4), we also define the strain rate and strain thresholds at which points the 

sample starts damaging. The strain rate and strain thresholds yield 31.7/s, 0.37%, respectively. 

4. Dynamic Constitutive Model of Granite 

The stress-strain curves of granite under impact loading show significant work hardening and plastic 
flow characteristic, which can be accurately described by the Zhu-Wang-Tang (ZWT) model. However, 

rock is a heterogeneous material, and its interior contains a large number of defects, such as pores, 

micro cracks, other weak materials, etc. The rheological process of rock is frequently accompanied by 
the expansion of internal defects. Therefore, under impact loading, the impact of damage evaluation on 

rock failure could not be neglected and the ZTW model should be improved to establish a dynamic 

constitutive model for granite. 

4.1. Simplification of ZWT Constitutive Model 
Zhu et al. [16] proposed a viscoelastic constitutive equation with two viscous models to study dynamic 

mechanical behavior of epoxy resin under one-dimensional stress state. This equation is called ZWT 

constitutive model, and its expression is as follow: 

 1 2
0 0

1 2

( ) ( )exp( )d exp d
 

      
 

  
     

 
 

t t

e

t t
f E t E                (5) 

Where 
2 2

0( )     ef E , here,α and β are elastic constants. 

The ZWT model consists of two Maxwell fluid models and a nonlinear elastic model in parallel, as 
shown in Fig. 6. Maxwell fluid model C describes the viscoelastic response of materials at low stain 

rates, while B for high strain rates. Generally, the relaxation time of φ1 is from 100 to 102s-1, and the 

relaxation time of φ2 is from 10-6 to 10-4s-1[17]. However, the time scale of SHPB experiments are in the 
range of 10-6 to 10-4/s so that the low frequency Maxwell model cannot describe the mechanical 

behavior of the samples observed in the experiments. As a result, the low frequency Maxwell model 

can be simplified as a spring with an elastic constant, E1, and the equation (5) can be rewritten as 

 1 2
0

2

( ) exp d


     


 
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 


t

e

t
f E E                   (6) 
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Figure 6. Z-W-T model 

 
The quasi-static compression tests indicate that granite behaves near-linearly elastic in the early 

stage, and the magnitude of maximum strain is about 10-2. So the term ( )ef   can be simplified as 

0( ) ef E . Assuming 0 1 aE E E , equation (6) becomes 

 2
0

2

exp d


    


 
   

 


t

a

t
E E                       (7) 

Furthermore, the strain rate employed in the experiments is constant, i.e.  =constant  , so that 

equation (7) can be rewritten as 

2 2

2

[1 exp( )]


   



  aE E                           (8) 

4.2. Establishment of a Damaged ZWT Constitutive Model 

Development of internal damage such as micro-cracks often leads to rock failure/damage. Following 
the strain equivalence principle proposed by Lemaitre, et al. [18], we may establish a damage 

constitutive equation of granite written as  

 1a rD                               (9) 

Here σa is effective stress, σr is mean stress, and D is damage variable. 

Combining equations (8) and (9), we obtain a constitutive model that involves both viscoelastic and 
damage effects of granite, which yields, 

2 2

2

(1 ){ [1 exp( )]}aD E E

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


                        (10) 

The SHPB experimental results show that the number of cracks in specimen increases with the 

increase of strain rate. In other words, the damage evaluation is closely related to the strain rate. 

Assuming the damage evolution of granite follows a promoting thermal activation process [19], the 
damage variable D may be represented by the rate evaluation law as follow 

0

 
t

DD K dt                             (11) 

In the case of a constant loading rate, we assume a strain rate threshold that results in the occurrence of 

damage. Then, integrating equation (11) may represent the damage evaluation process of granite 
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Where, KD and δ are the dynamic response parameters of rocks. According to the second contents, the 

strain rate threshold of granite in this paper is 0
 =3670με. 

Substituting equation (12) into (10) gives  

1

0 2 2

2

[1 ( )]{ [1 exp( )]} 
      



 
    D aK E E                (13) 

Equation (13) may represent the dynamic constitutive model of granite. This model contains five 
parameters of KD, δ, Ea, E2 and φ2, which are concise and have clear physical meaning. Therefore this 

model would be easy to apply to engineering practice. 

5. Application of Dynamic Constitutive Model 

We now use equation (13) to fit the stress-strain curves of granite measured at four different strain 
rates, by means of the least square methods. The best fitting is shown in Fig. 7 and the fitting 

parameters are listed in Table 1. 

 
Table 1. Constitutive model parameters 

 /s-1 KD α Ea/GPa E2/GPa 2/μs 

39.1 90.6 0.211 15.2 93.0 2.6 

67.6 70.2 0.239 17.0 161.7 2.6 

100.1 50.2 0.165 18.9 133.8 2.6 

139.1 60.1 0.057 19.0 198.4 2.6 

 

Fig. 7 shows that the fitting curves are in good agreement with the curve obtained from 
experiments, especially before rock sample yielding. The correlation coefficients (R2) of all fitting 

curves are greater than 0.95. It is known that the parameter Ea which characterizes the effective elastic 

response increases with the increase of strain rate. We compared the relative errors of the yield stress 
and the peak stress obtained from fitting method and experimental data, neither of which exceeded 

10%.  

In summary, the proposed dynamic constitutive model can well describe the linear elastic 

properties of granite before yielding and accurately reflect the rate dependence of elasticity modulus 
and dynamic strength. Note that the model in this paper cannot accurately describe the fluctuation of 

stress-strain curves after yielding under high-speed impact, which may be related to less parameters in 

the model. 



ESCE2019

IOP Conf. Series: Earth and Environmental Science 283 (2019) 012019

IOP Publishing

doi:10.1088/1755-1315/283/1/012019

8

 

 

 



ESCE2019

IOP Conf. Series: Earth and Environmental Science 283 (2019) 012019

IOP Publishing

doi:10.1088/1755-1315/283/1/012019

9

 

 

Figure 7. Stress-strain curve of granite at different strain rates 

6. Conclusions 

We performed experiments on granite under impact loading at constant strain rates using a constant 
strain rate SHPB system. Dynamic mechanical properties of granite at different strain rates were 

investigated. The experimental results illustrate that the granite samples show linear elastic behavior at 

the initial loading stage followed by significant strain hardening behavior. All dynamic parameters 
(such as elastic modulus, dynamic strength) are strain rate dependence. Based on the experimental 

findings, we improved the ZWT nonlinear viscoelastic constitutive model to describe the dynamic 

mechanical behavior of granite. The proposed model is concise in form and its parameters are easy to 

obtain. More importantly, the proposed model involves the effect of damage evaluation on dynamic 
strength of granite, and can well explain our experimental data. 
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