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Abstract. Boundary value problems (BVPs) governed by a class of elliptic equations for
anisotropic quadratically graded media are solved using Boundary Element Method (BEM).
The variable coefficient governing equation is transformed to a constant coefficient equation
which is then transformed to a boundary integral equation. The results show the convergence,
consistency, and accuracy of the BEM solutions.

1. Introduction
Several types of constant coefficient equations have been solved using BEM (see for examples
[1, 2, 3, 4]. But in general this is not the case for variable coefficient equation. There is some
progress in using BEM to solve several types of variable coefficient governing equations (see for
examples [5, 6, 7, 8, 9, 10, 11])

The governing equation considered by Salam et. al in [11] takes the form

∂

∂xi

[
λij (x1, x2)

∂φ (x1, x2)

∂xj

]
= 0 (1)

This paper is intended to extend the work by Salam et. al [11] for problems with governing
equation (1) to for 2D boundary value problems governed by another type of (dimensionless)
elliptic equation of the form

∂

∂xi

[
λij (x1, x2)

∂φ (x1, x2)

∂xj

]
+ β (x1, x2)φ (x1, x2) = 0 (2)

where the coefficients λij depend on x1 and x2 and the repeated summation convention (summing
from 1 to 2) is employed.

The matrix of coefficients [λij ] is a real symmetric positive definite matrix so that equation
(2) is a second order elliptic partial differential equation and may be written explicitly as

∂

∂x1

(
λ11

∂φ

∂x1

)
+ 2

∂

∂x1

(
λ12

∂φ

∂x2

)
+

∂

∂x2

(
λ22

∂φ

∂x2

)
+ βφ = 0
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Further, the coefficients λij and β are required to be twice differentiable functions of the two
independent variables x1 and x2. The analysis here is specially relevant to an anisotropic medium
but it equally applies to isotropic media. For isotropy, the coefficients in (2) take the form
λ11 = λ22 and λ12 = 0 and use of these equations in the following analysis immediately yields
the corresponding results for an isotropic medium.

Steady infiltration problems (when β < 0, see for examples [12, 13]), acoustic problems (when
β > 0, see for examples [14, 15]), and antiplane strain in elastostatics and plane thermostatic
problems (when β = 0) are the areas for which the governing equation is of the type (2).

The technique of transforming (2) to a constant coefficient equation will be used for obtaining
a boundary integral equation for the solution of (2).

2. The boundary value problem
Referred to a Cartesian frame Ox1x2 a solution to (2) is sought which is valid in a region Ω in
R2 with boundary ∂Ω which consists of a finite number of piecewise smooth closed curves. On
∂Ω1 the dependent variable φ (x) (x = (x1, x2)) is specified and on ∂Ω2

P (x) = λij (∂φ/∂xj)ni (3)

is specified where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2) denotes the outward pointing normal to
∂Ω.

3. The boundary integral equation
The boundary integral equation is derived by transforming the variable coefficient equation (2)
to a constant coefficient equation. The coefficients λij and β are required to take the form

λij (x) = λijg(x) (4)

β (x) = βg(x) (5)

where the λij and β are constants and g is a differentiable function of x. Use of (4) and (5) and
in (2) yields

λij
∂

∂xi

(
g
∂φ

∂xj

)
+ βgφ = 0 (6)

Let
φ (x) = g−1/2 (x)ψ (x) (7)

so that (6) may be written in the form

λij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
+ βg1/2ψ = 0

That is

λij

[(
1

4
g−3/2 ∂g

∂xi

∂g

∂xj
− 1

2
g−1/2 ∂2g

∂xi∂xj

)
ψ + g1/2 ∂2ψ

∂xi∂xj

]
+ βg1/2ψ = 0 (8)

Use of the identity
∂2g1/2

∂xi∂xj
= −1

4
g−3/2 ∂g

∂xi

∂g

∂xj
+

1

2
g−1/2 ∂2g

∂xi∂xj

permits (8) to be written in the form

g1/2λij
∂2ψ

∂xi∂xj
− ψλij

∂2g1/2

∂xi∂xj
+ βg1/2ψ = 0 (9)
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If we further restrict the function g(x) to take the exponential form

g(x) = [A (α0 + α1x1 + α2x2)]2 (10)

where αm are constant, then

λij
∂2g1/2

∂xi∂xj
= 0 (11)

Subtitution (11) into (9) implies a constant coefficients equation

λij
∂2ψ

∂xi∂xj
+ βψ = 0 (12)

Also, substitution of (4) and (7) into (3) gives

P = −Pgψ + Pψg
1/2 (13)

where

Pg (x) = λij
∂g1/2

∂xj
ni Pψ (x) = λij

∂ψ

∂xj
ni

A boundary integral equation for the solution of (12) is given in the form

η (x0)ψ (x0) =

∫
∂Ω

[Γ (x,x0)ψ (x)− Φ (x,x0)Pψ (x)] ds (x) (14)

where x0 = (a, b), η = 0 if (a, b) /∈ Ω∪ ∂Ω, η = 1 if (a, b) ∈ Ω, η = 1
2 if (a, b) ∈ ∂Ω and ∂Ω has a

continuously turning tangent at (a, b).
The so called fundamental solution Φ in (14) is any solution of the equation

λij
∂2Φ

∂xi∂xj
+ βΦ = δ (x− x0)

and the Γ is given by

Γ (x,x0) = λij
∂Φ (x,x0)

∂xj
ni

where δ is the Dirac delta function. Following Azis in [16], for two-dimensional problems Φ and
Γ are given by

Φ (x,x0) =


K
2π lnR if β = 0
ıK
4 H

(2)
0 (ωR) if β > 0

−K
2π K0 (ωR) if β < 0

Γ (x,x0) =


K
2π

1
Rλij

∂R
∂xj

ni if β = 0
−ıKω

4 H
(2)
1 (ωR)λij

∂R
∂xj

ni if β > 0
Kω
2π K1 (ωR)λij

∂R
∂xj

ni if β < 0

(15)
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where

K = τ̈ /ζ

ω =

√
|β|/ζ

ζ =
[
λ11 + 2λ12τ̇ + λ22

(
τ̇2 + τ̈2

)]
/2

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2

ẋ1 = x1 + τ̇x2

ȧ = a+ τ̇ b

ẋ2 = τ̈x2

ḃ = τ̈ b

where τ̇ and τ̈ are respectively the real and the positive imaginary parts of the complex root τ
of the quadratic

λ11 + 2λ12τ + λ22τ
2 = 0

and H
(2)
0 , H

(2)
1 denote the Hankel function of second kind and order zero and order one

respectively. K0, K1 denote the modified Bessel function of order zero and order one respectively,
ı represents the square root of minus one. The derivatives ∂R/∂xj needed for the calculation of
the Γ in (15) are given by

∂R

∂x1
=

1

R
(ẋ1 − ȧ)

∂R

∂x2
= τ̇

[
1

R
(ẋ1 − ȧ)

]
+ τ̈

[
1

R

(
ẋ2 − ḃ

)]
Use of (7) and (13) in (14) yields

η (x0) g1/2 (x0)φ (x0) =

∫
∂Ω

{[
g1/2 (x) Γ (x,x0)− Pg (x) Φ (x,x0)

]
φ (x)

−
[
g−1/2 (x) Φ (x,x0)

]
P (x)

}
ds (x) (16)

This equation provides a boundary integral equation for determining φ and P at all points of Ω.

4. Numerical examples
In order to show the appropriateness of the BEM and the validity of the analysis used above for
deriving the boundary integral equation (16), some particular boundary value problems will be
solved. The integrals in equation (16) are evaluated numerically using the Bode’s quadrature
(see Abramowitz and Stegun [17]).

4.1. Examples with analytical solutions
In order to see the convergence and accuracy of the BEM we will consider some examples of
problems with analytical solutions. The parameters for the quadratical inhomogeneity function
g(x) are A = 3, α0 = 1, α1 = 0.25, α2 = 0.75. Plot of g(x) is shown in Figure 1. The geometry
of the region Ω and the boundary conditions are as depicted in Figure 2. The values of the
constant coefficients λij for the governing equation (2) are

λ11 = 0.75, λ12 = 0.5, λ22 = 1
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The function g(x) satisfies (10). Therefore equation (12) has to be the corresponding constant
coefficient equation for ψ(x) in which β > 0, β < 0 or β = 0. Three possible forms of function
ψ(x) satisfying (12) that will be taken are

ψ (x) = B [cos (γixi) + sin (γixi)] β = λijγiγj

ψ (x) = B exp (γixi) β = −λijγiγj
ψ (x) = B (γ0 + γ1x1 + γ2x2) β = 0

The parameters for the analytical solutions ψ (x) are taken to be

B = 2, γ0 = 1, γ1 = 0.75, γ2 = 0.35
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Figure 1. A quadratic inhomogeneity function g(x) = [3 (1 + 0.25x1 + 0.75x2)]2

-

6

x1

x2

D(0, 1)

P given

A(0, 0) φ given B(1, 0)

φ given

C(1, 1)φ given

Figure 2. The geometry of all problems in Section 4.1

4.1.1. Problem 4.1.1: Case β = λijγiγj in equation (12) We take analytical solutions

ψ (x) = B [cos (γixi) + sin (γixi)] thus β = 0.806875

φ (x) = B [cos (γixi) + sin (γixi)] / [A (α0 + α1x1 + α2x2)]
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Table 1 shows the results of the analytical and BEM solutions with 20, 40 and 80 elements of
equal length. The BEM solution converges to the analytical solution as the number of elements
increases.

Table 1. BEM and analytical solutions for Problem 4.1.1
(x1, x2) φ ∂φ/∂x1 ∂φ/∂x2 φ ∂φ/∂x1 ∂φ/∂x2

BEM 20 elements BEM 40 elements
(0.1,0.5) 0.5799 0.1620 -0.1944 0.5797 0.1521 -0.1888
(0.3,0.5) 0.6028 0.0759 -0.2246 0.6026 0.0775 -0.2247
(0.5,0.5) 0.6109 0.0061 -0.2518 0.6109 0.0070 -0.2529
(0.7,0.5) 0.6055 -0.0597 -0.2728 0.6057 -0.0590 -0.2741
(0.9,0.5) 0.5879 -0.1015 -0.2966 0.5876 -0.1207 -0.2878
(0.5,0.1) 0.7297 0.0867 -0.3737 0.7300 0.0660 -0.3545
(0.5,0.3) 0.6651 0.0330 -0.2928 0.6654 0.0338 -0.2945
(0.5,0.7) 0.5637 -0.0164 -0.2223 0.5636 -0.0162 -0.2222
(0.5,0.9) 0.5220 -0.0536 -0.1832 0.5215 -0.0352 -0.1995

BEM 80 elements Analytical
(0.1,0.5) 0.5793 0.1539 -0.1900 0.5792 0.1543 -0.1900
(0.3,0.5) 0.6025 0.0788 -0.2255 0.6025 0.0794 -0.2261
(0.5,0.5) 0.6111 0.0078 -0.2538 0.6112 0.0081 -0.2543
(0.7,0.5) 0.6059 -0.0587 -0.2748 0.6060 -0.0588 -0.2751
(0.9,0.5) 0.5880 -0.1199 -0.2892 0.5880 -0.1204 -0.2890
(0.5,0.1) 0.7306 0.0651 -0.3562 0.7310 0.0638 -0.3560
(0.5,0.3) 0.6658 0.0343 -0.2959 0.6661 0.0341 -0.2965
(0.5,0.7) 0.5636 -0.0152 -0.2229 0.5636 -0.0148 -0.2233
(0.5,0.9) 0.5215 -0.0355 -0.1993 0.5214 -0.0350 -0.1998

4.1.2. Problem 4.1.2: Case β = −λijγiγj in equation (12) Analytical solutions are

ψ (x) = B exp (γixi) thus β = −0.806875

φ (x) = B exp (γixi) / [A (α0 + α1x1 + α2x2)]

The results are shown in Table 2. Again, the BEM solution converges to the analytical solution
as the number of elements increases.
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Table 2. BEM and analytical solutions for Problem 4.1.2
(x1, x2) φ ∂φ/∂x1 ∂φ/∂x2 φ ∂φ/∂x1 ∂φ/∂x2

BEM 20 elements BEM 40 elements
(0.1,0.5) 0.6140 0.3543 -0.1132 0.6127 0.3479 -0.1114
(0.3,0.5) 0.6881 0.3938 -0.1097 0.6869 0.3956 -0.1123
(0.5,0.5) 0.7723 0.4493 -0.1101 0.7713 0.4496 -0.1127
(0.7,0.5) 0.8685 0.5146 -0.1122 0.8673 0.5118 -0.1138
(0.9,0.5) 0.9788 0.5920 -0.1158 0.9768 0.5856 -0.1164
(0.5,0.1) 0.8365 0.4705 -0.2545 0.8363 0.4480 -0.2203
(0.5,0.3) 0.7986 0.4516 -0.1544 0.7983 0.4513 -0.1596
(0.5,0.7) 0.7539 0.4491 -0.0743 0.7525 0.4499 -0.0766
(0.5,0.9) 0.7403 0.4244 -0.0689 0.7402 0.4477 -0.0461

BEM 80 elements Analytical
(0.1,0.5) 0.6121 0.3486 -0.1126 0.6114 0.3494 -0.1136
(0.3,0.5) 0.6864 0.3957 -0.1134 0.6859 0.3962 -0.1147
(0.5,0.5) 0.7708 0.4496 -0.1142 0.7703 0.4494 -0.1156
(0.7,0.5) 0.8667 0.5109 -0.1148 0.8661 0.5099 -0.1159
(0.9,0.5) 0.9758 0.5810 -0.1152 0.9749 0.5788 -0.1158
(0.5,0.1) 0.8366 0.4522 -0.2256 0.8371 0.4534 -0.2302
(0.5,0.3) 0.7982 0.4510 -0.1617 0.7981 0.4508 -0.1640
(0.5,0.7) 0.7518 0.4497 -0.0777 0.7511 0.4495 -0.0785
(0.5,0.9) 0.7393 0.4510 -0.0482 0.7384 0.4513 -0.0492

4.1.3. Problem 4.1.3: Case β = 0 in equation (12) Now we choose analytical solutions

ψ (x) = B (γ0 + γ1x1 + γ2x2)

φ (x) = B (γ0 + γ1x1 + γ2x2) / [A (α0 + α1x1 + α2x2)]

The results are shown in Table 3. Once again, the BEM solution converges to the analytical
solution as the number of elements increases.
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Table 3. BEM and analytical solutions for Problem 4.1.3
(x1, x2) φ ∂φ/∂x1 ∂φ/∂x2 φ ∂φ/∂x1 ∂φ/∂x2

BEM 20 elements BEM 40 elements
(0.1,0.5) 0.5963 0.2587 -0.1533 0.5957 0.2501 -0.1505
(0.3,0.5) 0.6446 0.2316 -0.1688 0.6440 0.2332 -0.1704
(0.5,0.5) 0.6895 0.2180 -0.1854 0.6892 0.2185 -0.1871
(0.7,0.5) 0.7320 0.2071 -0.2009 0.7316 0.2057 -0.2020
(0.9,0.5) 0.7728 0.2099 -0.2198 0.7715 0.1950 -0.2151
(0.5,0.1) 0.7824 0.2738 -0.3167 0.7825 0.2514 -0.2896
(0.5,0.3) 0.7305 0.2354 -0.2271 0.7307 0.2354 -0.2304
(0.5,0.7) 0.6557 0.2027 -0.1538 0.6551 0.2037 -0.1549
(0.5,0.9) 0.6270 0.1660 -0.1296 0.6267 0.1892 -0.1297

BEM 80 elements Analytical
(0.1,0.5) 0.5955 0.2503 -0.1514 0.5952 0.2509 -0.1522
(0.3,0.5) 0.6438 0.2335 -0.1711 0.6437 0.2338 -0.1720
(0.5,0.5) 0.6890 0.2185 -0.1880 0.6889 0.2185 -0.1889
(0.7,0.5) 0.7314 0.2052 -0.2026 0.7312 0.2046 -0.2033
(0.9,0.5) 0.7712 0.1930 -0.2152 0.7708 0.1921 -0.2155
(0.5,0.1) 0.7829 0.2541 -0.2931 0.7833 0.2535 -0.2951
(0.5,0.3) 0.7308 0.2352 -0.2318 0.7309 0.2350 -0.2332
(0.5,0.7) 0.6548 0.2037 -0.1555 0.6545 0.2039 -0.1561
(0.5,0.9) 0.6263 0.1904 -0.1305 0.6259 0.1908 -0.1312

4.2. Examples without analytical solutions
In this section we will consider some examples of problems without simple analytical solutions.
We setup some problems for a homogeneous isotropic material by taking g(x) = 9 and with
symmetrical boundary conditions. This function g(x) satisfies equation (10) thus we will take
ψ (x) that satisfies (12) to be put into the integral equation (14). The main purpose is to see
the consistency of whether the BEM produces symmetrical solutions.

4.2.1. Problem 4.2.1: Case β > 0 in equation (12) For this problem we take β = 1.5 and
the symmetrical boundary conditions are as shown in Figure 3. Table 4 shows the results of
the BEM solution using 20, 40, 80 and 160 elements of equal length. As expected, the results
converge as the number of elements increases and also they are symmetrical about the axes
x2 = 0.5.
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x1

x2

D(0, 1)

P = 1

A(0, 0) P = 0 B(1, 0)

φ = 0

C(1, 1)P = 0

Figure 3. The geometry of Problem 4.2.1 and Problem 4.2.2

Table 4. BEM solution for Problem 4.2.1
(x1, x2) φ ∂φ/∂x1 ∂φ/∂x2 φ ∂φ/∂x1 ∂φ/∂x2

BEM 20 elements BEM 40 elements
(0.1,0.5) 0.2402 -0.1497 0.0000 0.2396 -0.1492 0.0000
(0.3,0.5) 0.2032 -0.2179 0.0000 0.2029 -0.2162 0.0000
(0.5,0.5) 0.1539 -0.2721 0.0000 0.1540 -0.2702 0.0000
(0.7,0.5) 0.0955 -0.3094 0.0000 0.0959 -0.3079 0.0000
(0.9,0.5) 0.0315 -0.3278 0.0000 0.0321 -0.3269 -0.0000
(0.5,0.1) 0.1541 -0.2620 -0.0012 0.1541 -0.2713 -0.0004
(0.5,0.3) 0.1540 -0.2724 -0.0002 0.1540 -0.2704 -0.0001
(0.5,0.7) 0.1540 -0.2724 0.0002 0.1540 -0.2704 0.0001
(0.5,0.9) 0.1541 -0.2620 0.0012 0.1541 -0.2713 0.0004

BEM 80 elements BEM 160 elements
(0.1,0.5) 0.2391 -0.1485 -0.0000 0.2389 -0.1482 -0.0000
(0.3,0.5) 0.2026 -0.2152 -0.0000 0.2024 -0.2148 -0.0000
(0.5,0.5) 0.1539 -0.2691 -0.0000 0.1538 -0.2685 -0.0000
(0.7,0.5) 0.0960 -0.3068 -0.0000 0.0960 -0.3062 -0.0000
(0.9,0.5) 0.0324 -0.3261 -0.0000 0.0325 -0.3256 -0.0000
(0.5,0.1) 0.1539 -0.2693 -0.0002 0.1538 -0.2686 -0.0001
(0.5,0.3) 0.1539 -0.2692 -0.0001 0.1538 -0.2686 -0.0000
(0.5,0.7) 0.1539 -0.2692 0.0001 0.1538 -0.2686 0.0000
(0.5,0.9) 0.1539 -0.2693 0.0002 0.1538 -0.2686 0.0001

4.2.2. Problem 4.2.2: Case β < 0 in equation (12) We take β = −1.5 and boundary conditions
are as shown in Figure 3. Table 5 shows the results of the BEM solution using 20, 40, 80 and
160 elements of equal length. The results converge as the number of elements increases and also
they are symmetrical about the axes x2 = 0.5.

4.2.3. Problem 4.2.3: Case β = 0 in equation (12) We consider a problem with β = 0 and the
boundary conditions are as shown in Figure 3. Table 6 shows the results of the BEM solution
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Table 5. BEM solution for Problem 4.2.2
(x1, x2) φ ∂φ/∂x1 ∂φ/∂x2 φ ∂φ/∂x1 ∂φ/∂x2

BEM 20 elements BEM 40 elements
(0.1,0.5) 0.0644 -0.0992 -0.0000 0.0652 -0.1000 0.0000
(0.3,0.5) 0.0464 -0.0823 0.0000 0.0470 -0.0831 0.0000
(0.5,0.5) 0.0312 -0.0706 0.0000 0.0316 -0.0713 0.0000
(0.7,0.5) 0.0179 -0.0631 0.0000 0.0182 -0.0638 0.0000
(0.9,0.5) 0.0057 -0.0595 0.0000 0.0059 -0.0601 -0.0000
(0.5,0.1) 0.0311 -0.0679 0.0002 0.0316 -0.0715 -0.0000
(0.5,0.3) 0.0311 -0.0706 0.0000 0.0316 -0.0713 0.0000
(0.5,0.7) 0.0311 -0.0706 -0.0000 0.0316 -0.0713 -0.0000
(0.5,0.9) 0.0311 -0.0679 -0.0002 0.0316 -0.0715 0.0000

BEM 80 elements BEM 160 elements
(0.1,0.5) 0.0655 -0.1003 -0.0000 0.0656 -0.1004 -0.0000
(0.3,0.5) 0.0472 -0.0834 -0.0000 0.0473 -0.0835 -0.0000
(0.5,0.5) 0.0318 -0.0715 -0.0000 0.0319 -0.0716 -0.0000
(0.7,0.5) 0.0183 -0.0640 -0.0000 0.0184 -0.0641 -0.0000
(0.9,0.5) 0.0059 -0.0604 -0.0000 0.0060 -0.0605 -0.0000
(0.5,0.1) 0.0318 -0.0716 -0.0000 0.0319 -0.0717 -0.0000
(0.5,0.3) 0.0318 -0.0715 0.0000 0.0319 -0.0717 0.0000
(0.5,0.7) 0.0318 -0.0715 -0.0000 0.0319 -0.0717 -0.0000
(0.5,0.9) 0.0318 -0.0716 0.0000 0.0319 -0.0717 0.0000

Table 6. BEM solution for Problem 4.2.3
(x1, x2) φ ∂φ/∂x1 ∂φ/∂x2 φ ∂φ/∂x1 ∂φ/∂x2

BEM 20 elements BEM 40 elements
(0.1,0.5) 0.0979 -0.1100 -0.0000 0.0992 -0.1108 0.0000
(0.3,0.5) 0.0759 -0.1097 0.0000 0.0770 -0.1106 0.0000
(0.5,0.5) 0.0540 -0.1094 0.0000 0.0549 -0.1105 0.0000
(0.7,0.5) 0.0322 -0.1091 0.0000 0.0328 -0.1104 0.0000
(0.9,0.5) 0.0104 -0.1087 0.0000 0.0108 -0.1102 -0.0000
(0.5,0.1) 0.0540 -0.1053 0.0003 0.0549 -0.1108 0.0001
(0.5,0.3) 0.0540 -0.1095 0.0002 0.0549 -0.1105 0.0001
(0.5,0.7) 0.0540 -0.1095 -0.0002 0.0549 -0.1105 -0.0001
(0.5,0.9) 0.0540 -0.1053 -0.0003 0.0549 -0.1108 -0.0001

BEM 80 elements BEM 160 elements
(0.1,0.5) 0.0996 -0.1110 -0.0000 0.0998 -0.1110 -0.0000
(0.3,0.5) 0.0775 -0.1109 -0.0000 0.0776 -0.1110 -0.0000
(0.5,0.5) 0.0553 -0.1109 0.0000 0.0554 -0.1110 -0.0000
(0.7,0.5) 0.0331 -0.1108 0.0000 0.0332 -0.1110 -0.0000
(0.9,0.5) 0.0110 -0.1108 -0.0000 0.0110 -0.1110 -0.0000
(0.5,0.1) 0.0553 -0.1109 0.0000 0.0554 -0.1110 0.0000
(0.5,0.3) 0.0553 -0.1109 0.0000 0.0554 -0.1110 0.0000
(0.5,0.7) 0.0553 -0.1109 -0.0000 0.0554 -0.1110 -0.0000
(0.5,0.9) 0.0553 -0.1109 -0.0000 0.0554 -0.1110 -0.0000

using 20, 40, 80 and 160 elements of equal length. The results converge as the number of
elements increases and also they are symmetrical about the axes x2 = 0.5.
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5. Conclusion
The scalar elliptic governing equation (2) is used for modeling physical problems such as steady
infiltration problems (when β < 0), acoustic problems (when β > 0), and antiplane strain in
elastostatics and plane thermostatic problems (when β = 0). The boundary integral equation
(16) was derived from this governing equation (2) and straight from (16) a BEM was then
constructed for calculation of numerical solutions to the problems for anisotropic quadratically
graded media. The results show the convergence, consistency, and accuracy of the BEM
solutions. Together with its ease in implementation, it may be concluded that BEM is a good
numerical method for solving such kind of problems.
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