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Abstract. This study presents an analytical solution to the problem of determining the vertical 

modal structure of low-frequency atmospheric oscillations. This analytical solution is critically 

compared with the numerical solution of this problem known in the literature, and good 

agreement for vertical normal modes with the wave number less than 9 is found. Applicability 

of the analytical solution for diagnosing the atmospheric climate variability and the quality of 

its simulation by contemporary GCM is briefly discussed. 

1.  Introduction 

Using a classical approach, a special diagnostic technique to analyze the long-wave-type eigen-

solutions of governing primitive equations, which characterize free, unforced, temporal changes in the 

atmospheric dynamics, simulated by GCM. These results have demonstrated that at special conditions, 

the generated eigen-oscillations influence the climate statistics by changing the time-averaged basic 

state of the atmospheric circulation [3]. 

Within this general eigenvalue problem, the problems of determination of the horizontal normal 

modes and of the vertical normal modes, respectively, are intrinsically coupled. So, in general case, 

this problem does not allow for separation of variables and has to be studied numerically. The 

horizontal normal modes can be specified as a sum of associated Legendre polynomials or, what 

sometimes is preferred, as a sum of Hough functions being the eigenfunctions of Laplace’s tidal 
equations on a sphere.  However, in this short note we would like to remind the reader on existence of 

an exact analytical solution by Monin and Gavrilin to a very similar problem of determination of 

vertical normal modes in the quasi-geostrophic atmospheric dynamics. This analytical approach has a 

potential of testing and improving the diagnostic technique applied to atmospheric data and GCM 

outputs. 

2.  Diagnostic Problem Formulation 

We use the primitive equations written in the log-pressure coordinates. These equations are linearized 

with respect to the perturbations superimposed on a basic state. The basic state corresponds to a real 
horizontal & vertical distribution of meteorological parameters, averaged over time. To study the 

eigensolutions of the primitive equations and to recognize the individual atmospheric wave modes, by 

following the approach of Tanaka, this system was re-formulated in terms of the Galerkin projection 
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onto orthogonal basis functions. As the result, the original set of governing equations is split into two 

sub-systems, corresponding to the horizontal normal modes and the vertical normal modes, 

respectively. 

3.  Analytical Solution for the Vertical Normal Mode Structure 

The thermodynamic energy balance equation, taken under adiabatic approximation, gives an ordinary 

differential equation describing the vertical structure of oscillation [1]. 
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with p as the pressure, Gm is the vertical structure function depending on height (pressure) and on the 

vertical modal index m;  is the static stability parameter variable with height as 
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where T0(p) is the basic state temperature. The boundary condition follows from the energy balance at 

the top and the bottom (Earth surface) levels in the atmosphere, as in [1]. 
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It is taken both at the surface level p = p0 and at the top level p = pH. 
Equation (3.1) together with the boundary conditions (3.3), constitutes the classical Sturm-

Liouville problem. 

To solve this problem, we apply an exact analytical solution of by Monin and Gavrilin for a similar 

differential operator and similar boundary conditions. In terms of (3.1), (3.3), the exact analytical 

solution  

Gm p( ) = ±
p0

p
2nm cos nm ln

p0

p

æ

è
ç

ö

ø
÷

é

ë
ê - 1- 2a0

2 sin nm ln
p0

p

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷
ù

û
ú
ú
                   (3.4) 

The surface pressure p0 is taken equal to 1000hPa; the eigenvalues are given by the formula 

( )Hm ppm 0ln =
                                                      (3.5) 

where m is the vertical wave number (changing from 0 to 12); 
hPapH 50=

;  

0

2

0 T =
                                                             (3.6) 

is the non-dimensional static stability parameter. It should be noted that (3.4) describes both the 

barotropic and baroclinic components, which can be compared with numerical results [1] (Table 1). 

The input T0(p) and γ(p) data at pressure levels similar as in Tanaka and Kung [1] have been used 

from the paper just cited; see 1st-3rd columns of Table 1. 

 

Table 1. Basic state temperature T0, stability parameter , and the equivalent height hm; from 

Tanaka and Kung [1986]. 

 

p(hPa) To(K)  (K) m hm(m) 

50 208.22 53.18 0 9564.8 

70 210.42 53.44 1 1629.1 

100 212.75 53.98 2 338.6 
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150 215.52 49.54 3 163.6 

200 220.50 39.53 4 92.5 

250 227.10 31.19 5 64.6 

300 233.95 25.94 6 47.8 

400 247.54 22.14 7 28.1 

500 253.44 24.76 8 21.9 

700 274.23 32.45 9 14.4 

850 282.80 35.13 10 10.6 

1000 290.40 32.28 11 8.6 

 

4.  Results and Analysis 

The analytical solution (3.4) is in good agreement with the numerical results (Figures 1 to 4). Note, 

that no indication on the tropopause is apparent in the global mean state shown in Table 1, because of 

insufficient model resolution in the stratosphere. The wavenumber m = 0 corresponds to the barotropic 

mode, whereas the modes with m ≥1 are regarded as the baroclinic modes, with the number of nodes 

given by m. In numerical computations, the vertical structure of the higher baroclinic modes may 

depend on the selection of vertical levels. Since these modes have an aliasing problem in the 

stratosphere, these issues are addressed in the subsequent computations. 

In particular, the baroclinic mode with m = 2 has a single maximum at 150 hPa. For m = 3 this 

maximum is shifting down to 180 hPa, but a secondary maximum appears at 100 hpa. 

 

Figure 1. Vertical eigenvectors for vertical mode for m = 3 (comparison for analytical and numerical 

solutions). 

The Baroclinic mode shows a maximum at 150 and 70 hPa. For the baroclinic mode has three 

maxima, at 230, 90, and 50 hPa. 
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Figure 2. Vertical eigenvectors for vertical mode for m = 5 (comparison for analytical and numerical 

solutions). 

Modes with m = 6 have maximum at 250 hPa, waves with m = 6 show maxima at 300, 200, and 

150 hPa. Wave number 8 is associated with the baroclinic mode having maxima at 700, 450, 270, 

and200 hPa. For m = 9 maxima occur at 500, 400, and 250 hPa. 

The comparison of the analytical solution with the numerical eigenfunction profiles shows good 

agreement for m = 9, but for higher m-values the analytical solution does not match the numerical 

computations. However, depending on the considered problem the analytical solution can be easily 

used in various circumstances for the purpose of comparison with numerical calculations of the 

baroclinic modes. 

 

5.  Summary and Conclusuions 

In this work, we deal with an analytical solution to the problem of the vertical eigenmodes 

determination. In distinction to previously obtained numerical solutions, our approach is based on the 

exact analytical solution by Monin [2] which greatly facilitates analysis and allows for easier 

diagnostics of different dynamical mechanisms, which can govern the waves vertical structure and 

their propagation with altitude. Comparison of our analytical results with the previously obtained 

numerical profiles show good correspondence and confirm the applicability and usefulness of the 

analytical solution. 

Following the approach proposed by H. Tanaka, the present investigation deals with developing of 

diagnostic techniques to be applied to analysis of the wave-type modal structures of the atmospheric 
general circulation, by using the primitive governing equations. This study might be useful to 

illuminate such an important modern question as to what extent can the atmospheric dynamics be 
responsible for the low frequency atmospheric climate variability? Additionally, this diagnostic could 

assist in finding some deficiencies in the numerical solutions to the climate models, as far as it 

concerns the adequate reproduction of the low-frequency climate variability and climate statistics. 

Finally, our approach opens an easier way to future diagnostics of nonlinear interactions between 

modes, of mechanisms responsible for the upscale energy fluxes, which contribute to the atmospheric 

mean climate state and its variations. 
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