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Abstract. This research developed a mathematical model to evaluate positive effects of 

mangroves to nearshore process. Particular purpose of the study was to conduct the analytical 

calculation for the steady condition of wave energy density and wave heights distributions due 

to the presence of mangroves. The method used was an expansion of the equations for 

nearshore quantities from the general condition to the one with the existence of mangroves. 

First, the wave energy density was calculated analytically by solving the wave energy 

conservation equation. The analytic solution for energy quantity is a function of position 

variable, involving longshore currents component and other physical constant parameters. The 

next step was to insert the dissipation of wave energy flux due to wave breaking into another 

energy balance equation involving mangroves effects. The mangroves contribution is 

represented by the dissipation due to the existence of the plants in the water. Other quantities 

included in the model are the wave group velocity and the dissipation due to bottom friction 

flux. Then the wave heights distribution concerning the mangroves effect was derived from the 

wave energy density function governed. 
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1. Introduction 

Beach vegetations such as mangroves have been well known providing the natural ability to protect 

the coastal areas and their communities by reducing the nearshore wave heights and lessen the 

sediment movements. However, the quantitative approach for investigations to determine the 

advantages of mangroves and muds in their growing areas towards the nearshore protection and other 

benefits in a broader context, has rarely been conducted. To fulfil the lack of investigations in this 

field, this research develop a mathematical model to evaluate the positive effects of mangroves to the 

nearshore process. 

 The mathematical modelling approach is an efective way in the effort to know the amount of 

protection provided by the mangrove plants by reducing coastal process caused by waves, which in 

turn will become input for the solution to the coastal hazards leading to coastal disaster. Particular 

purpose of the study was to conduct an analytical calculation of wave energy density and wave heights 

distributions due to the presence of mangroves. These wave quantity functions may also help as 

evaluation tools to the results of numerical methods as the commonly selected methods applied for 

solving problems. The method used was an expansion of the nearshore problem from the general 

condition to the one with existence of mangroves. The development of mathematical model was 
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conducted, the problem was solved analytically by implementing the mathematical integration 

methods to solve the differential equation problems. Here the steady case was solved. 

 

2. The model formulation and methods 

 In this research the wave quantites in the direction parallel to the shore line was assumed to be 

uniform. The domain of the mathematical model developed is an area in the two dimensional 

coordinates (x,z), which are the off−onshore with a sloping bottom configuration and vertical 

directions. The origin of the coordinates was selected at a certain offshore position of the still water 

surface. Water depth distribution h(x) along the interval was given as the input for the model. First, the 

wave quantities were governed without the involvement of mangroves. The wave energy density was 

calculated analytically by solving the wave energy conservation equation. The equation was 

accompanied by some initial conditions obtained at the origin position. The second step was to insert 

the dissipation of the wave energy flux due to wave breaking into another energy balance equation 

involving mangroves effects. The mangroves contribution is represented by the dissipation flux due to 

the existence of the plants in the water. Other quantities included in the model are the wave group 

velocity, and the dissipation due to bottom friction flux. Then the wave heights concerning the 

mangroves effect were derived from the wave energy function governed by using the famous Snel’s 

law for sloping bottom, and also by considering the wave breaking criterion. 

2.1. The domain and variables 

Consider two dimensions horizontal xz−plane. x refers the on-offshore axis and z be the distance 

measured upwards. Let 𝜂 = 𝜂(x) be the mean water level elevation measured above the still water level 

and h = h(x) is defined as the depth of the water measured from the reference axis to the bottom. If 0 is 

a reference position selected in the sea and a is the position where bottom slope s starts, let * 

symbolize the sloping related notation such that for the initial constant, the water depth is written as 

h0* = h0 + sa. Let  = (x) represents the angle between the incident wave with the positive x-axis, E = 

E(x) stands for the energy with c is the wave phase velocity, cgx is the group velocity component in x-

direction of the group velocity cg, H = H(x) is the wave height, g is the acceleration of gravity, and  is 

the fluid density. Moreover, let  be the angular frequency of incident wave, and k be the wave 

number. The depth averaged flow velocity components in along shore direction is represented by v = 

v(x).  

2.2. The change of wave field due to mangroves 

The change of wave field was calculated by using the wave energy conservation equation. Here, the 

total energy in mangrove plantation area is denoted by Ew with the subscript w stands for waves, the 

dissipation of wave energy flux due to wave breaking is Db, the dissipation due to bottom friction flux 

is Df, and the dissipation flux due to the plants in water is Dv. The model from [1] for the energy 

balance is given as 

dx(Ewcg) = - Db- Df - Dv.    (1) 

In this research, we proposed the analytical forms of the right hand side terms of equation (1), namely 

the dissipation terms Db, Df and Dv. From the calculation for energy density function, the wave heights 

quantity could be determined by using the relations formulated in linear wave theory as  E = 1/8 ρgH2,  

and the breaking criterion for the breaking constant γ which is defined as  

H = γ(h+η).  
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3. The analytic solution 

The analytic solution is found by solving the equation (1) analytically by using an integration method 

to solve the ordinary differential equation.  

 

3.1. The analytic energy density function 

The analytic functions of nearshore energy quantity for steady and unsteady flows in the direction 

perpendicular to the shore line on a sloping bottom up to the wave breaking position have been 

derived [2]. For steady problem, the one-dimensional energy conservation equation reads     dx(Ecgx) + Syxdxv = 0,            (2) 

where 

 n = 1/2[1 + 2 kh (sinh 2 kh)−1],  c = (gh)1/2, 

cgx = nc cos θ, Syx = 1/2 nE sin 2θ. 
 

Syx is the radiation stress components described in [3]. Recall for a very shallow water, kh << 1 such 

that n = 1 and cg = c. For this assumption, we write the equation (2) as a homogeneous first order linear 

ordinary differential equation: 

dx(Ec cos θ) + E sin θ cos θ dxv = 0.   (3) 

By Snel's law for a constant K and the subscript 0 refers to offshore values of x-axis, the sloping 

bottom yields the relation      (sin θ)/c = (sin θ0)/c0 = K.     (4) 

Let xb represents the position of breaking. In this paper, the dissipation of wave energy flux Db is 

approximated by the second term of equation (2) at the position of breaking, namely 

Db = Syxdxv, for x = xb .      (5) 

To get the contribution of Db in the solution of the main equation (1), we utilized equation (5) into 

equation (2) to be integrated as 

           Ec cos θ  = - ∫ Db dx            (6) 

For the initial constant E0
* = E0c0 cos θ0, the analytic steady solution of equation (2) for the energy 

between the area of sloping bottom until the breaking wave position xb is obtained as already given in 

[2],          E(x) = (c cos θ)-1E0
* exp(-Kv)          for a < x < xb (7) 

The analytic steady energy solution of equation (7) taken at the breaking position then becomes 

         E(xb) = (c cos θ(xb) )-1E0
* exp (-Kv(xb)).        (8) 

3.2. The bottom friction energy function 

The bottom friction force of Chezy law with the bottom friction coefficient Cf  is  F = ρCf 𝒖|𝒖|. It is 

interpreted as the force acts in the direction of flow velocity, with the magnitude proportional to the 
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square of the velocity. Following [4], assuming the net current 𝒖 is small compared to the orbital 

component, the quadratic form could be approximated by the linear term for the mean flow, namely           F = ρCf u(uorbital
2 +vorbital

2 )1/2
 

        ≈ 𝜌Cf u𝑢orbital     (9) 

Since uorbital= (γ/π)(g(h+η))1/2
, the dissipation of bottom friction flux Df  is then defined as  Df = Fu = (𝜌Cf γu2/π)(g(h+η))1/2

.    (10) 

Df is the transfer of wave energy flux to the turbulent bottom boundary layer, in the absence of 

vegetation [1]. The cross shore velocity component u in equation (10) is assumed here to be constant 

and small compared to the longshore component. By defining the surface slope s′ as [5]                s′ = - dx(h+η),                           (11) 

the integration result of the bottom friction dissipation term contributes to the main solution of 

equation (1) is formulated as  

       ∫ Df dx = -[2𝜌Cfγ(h+η)][g(h+η)]1/2u2/(3πs′)+ C.     (12) 

3.2.1. The analytic longsore currents component 

The analytic steady energy solution (8) involves longshore currents component v above the sloping 

bottom area which has been derived analytically in [6] adapted from [7]. It was derived by considering 

forcing terms included in the y−momentum equation for along shore direction. Radiation stress must 

be balanced by the bottom friction and momentum exchange forces. By taking an empirical constant N 

as in [5], the longshore currents at the breaking position is written in the form of 

                                       v(xb) = A v*( Pl − 1
Pl − P2

),      (13) 

where 

                v*= 5πγ(16Cf)−1[g(h+η)b]1/2s' sin θ(xb);  

P = Nπs′(γCf)-1; P1, P2 = -3/4 ± (9/16 +1/P)1/2;  A = P(1 − 5P/2)-1. 

3.3. The vegetation dissipation function 

The drag force due to the presence of vegetation is defined with the drag coefficient Cd  and the area of 

the plant Av in the form of Fd = 1/2 ρCd Av u|u|. Here the time averaged energy dissipation due to the 

plants in water Dv is refered to [8] and [9], with the drag coefficient of vegetation is denoted by Cd, the 

diameter of cylinders of plants is d, area per unit length of each vegetation stand b, and the elevation 

of the top of the plant relative to the bottom is sv.  

The dissipation of wave energy due to the plants Dv  is then defined as [8] 

Dv = 16ρCdd(3πk)-1b-2(gk/ω)3(3k cosh3kh)-1(sinh3ksv + 3 sinh ksv)H 3.  (14) 

The contribution of Dv in the solution of the main equation (1) can be written as 

     ∫ Dvdx = 16ρCdd(3πk)-1b-2(sinh3ksv + 3 sinh ksv) ∫(gk/ω)3(3k cosh3kh)-1
H 3dx.        (15) 
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Recall that the angular frequency ω is defined as  

ω2 = gk tanh kh 

For kh << 1, then it is approximated that tanh kh ≈ kh and cosh kh ≈ 1 so then ω2 = gk2h. By 

implementing these relations, and defining the water depth on the sloping bottom as h = h0+sa-sx,  the 

result of equation (15) is obtained, so the wave energy density due to mangroves is formulated as ∫ Dvdx = 16ρCddg3/2(9πk𝑠)-1b-2(sinh3ksv + 3 sinh ksv)H 3 ∫ h-3/2dh      (16) 

or ∫ Dvdx = -32ρCddg3/2(9πk𝑠)-1b-2h-1/2(sinh3ksv + 3 sinh ksv)H 3+ C.    (17) 

3.4. The analytic energy density of mangrove contribution 

By combining the analytic forms of equation (8) for the energy of breaking waves, equation (12) for 

the turbulent energy of bottom friction, and (17) for the energy loss due to the plants, the final result of 

analytic energy density due to the presence of mangrove is obtained: 

Ew = - 1/c{E0
* exp[-Kv(xb)]- [2𝜌Cfγ(h+η)][g(h+η)]1/2u2/(3πs′)} 

           + 1/c [32ρCddg3/2(9πk𝑠)-1b-2h-1/2(sinh3ksv+3 sinh ksv)H 3]+ C,     (18) 

with the form for v(xb) is given in equation (13). The constant C can be determined by giving some 

respective quantities at the wave breaking position.  

4. Results and Discussion 
The analytic function for energy density governed in equation (18) will help the investigations of the 

mangroves’ contribution in nearshore process. The energy contains the contributions of the energy due 

to breaking waves, bottom frictions, and the plants. The result also shows the role of three kinds of 

slopes which contribute toward the energy density, namely the bottom slope, the waves surface slope, 

and the top of mangroves slope.  

 To utilize the result, the initial conditions and data are needed as the input. Wave celerity, wave 

angle, wave height, and water depth at a selected initial position offshore are needed to determine the 

portion of energy at the wave breaking. Water depth distribution and flow velocity component along 

the cross shore section contribute to the energy due to the bottom friction. Quantities of the plant, 

particularly the diameter of the trunk, the area per unit length of each vegetation, and the slope of the 

canopy are needed to determine energy due to the plants.       

 Further work might be needed to see the variability of value combinations of the slopes for the 

distribution of wave energy and heights, as well as the contribution of the longshore currents. The 

wave height distribution due to the presence of mangroves could also be directly calculated from the 

energy density by using the relation given in the Subsection 2.2. The wave energy density governed 

from the model can also be utilized for other calculations such as the water level distribution at the 

shore line. 

 

5. Conclusion 

The analytic forms should then help as the tool for the numerical as well as the experimental works in 

the subject which also could evaluate the performance of the functions obtained at the same time.   
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