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Abstract. The influence of layer numbers on the structural and electrical performance of 

SrFe0.5Ti0.5O3-δ cobalt-free cathode was studied. The SrFe0.5Ti0.5O3-δ cathode films fabricated 

using screen-printing technique with different layer numbers sintered at 1300 °C for 2 h were 

characterised using field-emission scanning electron microscopy (FESEM) for structural 

analysis and four-point van der Pauw method for direct current electrical conductivity (σDC). 

FESEM micrographs confirmed that the SrFe0.5Ti0.5O3-δ cobalt-free cathode films (fabricated 

with different layer numbers) adhered well on the samarium doped ceria electrolyte surface. The 

porous films were also uniform without crack formation. The thicknesses of the as-fabricated 

cathode films were 9.0 ± 0.5, 25.6 ± 1.0, 54 ± 0.6, 71.2 ± 1.4 and 92.2 ± 1.6 μm for layer numbers 

1 (1×), 4, 7, 10 and 13 times (13×), respectively. The electrical performance of SrFe0.5Ti0.5O3-δ 

cobalt-free cathodes was reported within the operating temperature ranging from 550 °C to 800 

°C as the targeted application was the intermediate temperature solid oxide fuel cell. The layer 

numbers (thickness) dependence of σDC suggested a mechanism of long electron pathway at the 

surface and through the films due to the increase in pores. While the sintering temperature is 

kept constant, increasing in the number of layers increased the pores accordingly. Hence, the 

lowest σDC value at 800 °C (2.45 S cm−1) is obtained for SrFe0.5Ti0.5O3-δ cathode films with high 

number of layers (13×). The highest σDC value (16.46 S cm−1) was recorded for a single layer 

(1×) SrFe0.5Ti0.5O3-δ cathode film. Although the conductivity value was still far from the desired 

theoretical conductivity of 100 S cm−1, this result was better than that of the literature that 

reported the same composition, thereby showing that the quality of cathode film was improved. 

1. Introduction 

Fuel cell is an energy converter device that produced electricity through the electrochemical reaction 

between fuels (oxygen and hydrogen) [1,2]. Fuel cell has several types, and each of which can be 
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differentiated by its electrolyte materials [3]. Fuel cell that was built from the ceramic-based electrolyte 

is called solid oxide fuel cell (SOFC). The utilisation of ceramic materials allows SOFC to operate at 

high temperature which results in excellent efficiency. Traditional SOFC that used in power plant, such 

as in combined heat power system, normally can reach until 1000 °C. To allow the variation of SOFC 

applications, researchers mainly aimed to lower the operational temperature [4,5]. The reduction of the 

operating temperature not only expands the applications for this type of fuel cell but also resolves some 

issue related to cell degradation and durability [6]. However, the reduction of the temperature required 

development of new materials at each component of the SOFC as the commonly used material, such as 

yttria-stabilised zirconia (YSZ, electrolyte), lanthanum strontium manganite (cathode) and NiO – YSZ 

(anode), shows poor performance in the region with low operation temperature [7].  

 

For cathode, the latest approach is the use of cobalt-free mixed ionic-electronic conductor based 

materials [8,9]. Cobalt removal is crucial to reduce the thermal mismatch between cathode and 

electrolyte, thereby avoiding delamination to occur [10]. When delamination occurs, the overall 

performance of the SOFC will decrease drastically as the electronic and ionic pathways were 

disconnected. In the past 10 years, researchers have witnessed the synthesis process of numerous novel 

perovskite-based cobalt-free cathode materials by using a doping approach. For cobalt-free SrFeO3-δ-

based materials, Ti shows good performance in stabilising the cubic structure [11]. Various works 

related to the ionic (electrochemical) side of the cobalt-free Ti-doped SrFeO3-δ has been conducted to 

prove the potential of this material in operational temperature 800 ℃ [12–14]. For the electronic part, 

the direct current conductivity (σDC) has been extensively studied by observing the doping behaviour 

[12,13,15]. Meanwhile, the structural parameter together with electrode thickness determines the 

mechanism underlying the transport of the electron through the electrode [16]. Unfortunately, the effects 

of the structural parameter and cathode thickness for Ti-doped SrFeO3-δ (represented as SrFe1-xTixO3-δ) 

remains unexplored. Thus, this work aimed to study the effect of cathode thickness (in a function of 

layer number) on the structural and electrical performances, specifically on the σDC of cobalt-free 

Sr0.5Fe0.5Ti0.5O3-δ (x = 0.5) cathode. 

2. Methods 

2.1. SrFe0.5Ti0.5O3-δ Cathode Powder Preparation 

The precursor cathode powders were prepared using a combustion method. A stoichiometric amount of 

fuel (glycine) was added into the mixture of nitrate solutions (Sr(NO3)2, Fe(NO3)3‧9H2O and TiO(NO3)2) 

and stirred for 45 h to obtain homogenous precursor solution using magnetic stirrer. All materials were 

purchased from Sigma-Aldrich. Next, the drying process at a temperature of 150 °C (1.5 h) was 

conducted using a hot plate to eliminate excess water. The combustion was started by increasing the 

hotplate temperature to 350 °C which produced black ash called as precursor powders. Then, calcination 

at 1300 °C (5 h) was performed to yield the desired SrFe0.5Ti0.5O3-δ cathode powders. The purity of as-

synthesised cathode powders was proved using X-ray diffraction (XRD) analysis. Findings for primary 

and refined XRD patterns were reported in previous works [17,18]. 

2.2. Fabrication SrFe0.5Ti0.5O3-δ Cathode Ink Formation and Half-Cell Fabrication 

The as-synthesised SrFe0.5Ti0.5O3-δ powders underwent high energy ball milling (FRITSCH 

PULVERISETTE 6, Germany) together with acetone (250 rpm for 2 h). Then, the mixture was dried at 

90 °C (12 h). Afterward, the dried cathode powders with the volume percentage 26 % [19] were mixed 

together with a dispersant (hypermer KD15), solvent (terpineol) and binder (ethyl cellulose) to form a 

homogenous cathode ink. The mixing process was conducted using triple-roll miller (EGM-65, ELE, 

China). Half cells with cathode/electrolyte configuration were produced using screen printing technique. 

Prior to screen printing, the electrolyte substrate (diameter = 25 mm) made from samarium doped ceria 

(SDC) (Sigma-Aldrich) were prepared via pressing method (CARVER, USA) with a compaction 

pressure of 52 MPa and sintered at a temperature of 1400 °C (6 h). Then, a different number of cathode 
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layers with an area of 1 cm2 was screen printed on one side of the SDC electrolyte surfaces to form a 

half cell of SrFe0.5Ti0.5O3-δ/SDC. The layer numbers that were considered included 1 (1×), 4 (4×), 7 (7×), 

10 (10×) and 13 times (13×). The formation of each layer was followed by a drying process. Upon the 

completion of desired layer numbers, the symmetrical cells were then sintered at 1300 °C (2 h).  

2.3. Structural and Electrical Conductivity Characterisation 

The morphology of the SrFe0.5Ti0.5O3-δ films were characterised via field-emission scanning electron 

microscopy (FESEM; JEOL JSM-6701F) by using two approaches, namely, surface and cross-sections. 

For direct current electrical characterisation, the σDC of SrFe0.5Ti0.5O3-δ cathode with different layer 

numbers was measured using the four-point Van der Pauw technique. The measurement was performed 

at a temperature of 600 °C to 800 °C in flowing air (200 ml/min), and the current was kept constant 

(0.001 A). 

3. Results and Discussions 

3.1. Structural Characterisation of SrFe0.5Ti0.5O3-δ Cathodes 

The surface and cross-sectioned micrograph for SrFe0.5Ti0.5O3-δ cathode produced with different layer 

numbers are shown in Figure 1. The porous structure was observed in all films. The difference in the 

surface micrograph with the increase in layer numbers was insignificant. For cross-sectioned 

micrographs, the thickness of cathode films increased as the number of layers increased. Each cross-

sectioned view showed the formation of well-adhered and uniform SrFe0.5Ti0.5O3-δ cathode films on the 

SDC electrolyte substrate. 

 

 
Figure 1. FESEM cross-sectioned and surface micrographs for SrFe0.5Ti0.5O3-δ cathode with layer 

numbers of (a) 1×, (b) 4×, (c) 7×, (d) 10× and (e) 13×. 

The thicknesses of the SrFe0.5Ti0.5O3-δ cathode films were 9.0 ± 0.5, 25.6 ± 1.0, 54.0 ± 0.6, 71.2 ± 1.4 

and 92.2 ± 1.6 μm for the layer numbers 1×, 4×, 7×, 10× and 13×, respectively. The cross-sectioned 

micrograph showed that the porosity increased with the increase in either layer number or thickness.  
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3.2. DC Electrical Conductivity of SrFe0.5Ti0.5O3-δ Cathodes 

Figure 2 shows the σDC for SrFe0.5Ti0.5O3-δ cathode films with different layer numbers tested in the 

temperature ranging from 500 ℃ to 800 ℃. The results showed that all films exhibited semiconducting 

behaviour, in which the conductivity increased as the operation temperature increased. This result was 

caused by polaron hopping conduction mechanism that is generally reported in iron-containing cathode 

materials [20,21]. All cathodes with different layer numbers showed the highest σDC values at 800 ℃, 

with single-layer cathode (labelled as SP 1×) exhibiting the maximum σDC value of 16.46 S cm−1. The 

remaining σDC values were 8.65, 3.58, 2.53 and 2.45 S cm-1 for layer numbers 3×, 7×, 10× and 13× at 

800 ℃), respectively. All σDC values obtained for cathode with different layer numbers were still far 

from the targeted theoretical value (~ 100 S cm-1) to ensure an excellent current collection. However, an 

improvement was observed when the results were compared to the same composition reported elsewhere 

[22]. A better σDC is expected to be obtained in a lower dopant mole ratio (<0.5).  

 

 

 
Figure 2. DC electrical conductivity for cobalt-free SrFe0.5Ti0.5O3-δ cathodes at 500-800 ℃. 

 

On the microstructural perspective, as the layer numbers increased, the porosity also increased. An 

increase in pores resulted in the discontinuity of the electric pathway, thereby decreasing the σDC values. 

This result explained the inversely proportional relationship between layer numbers (thickness) and σDC. 

Samat el at. (2018) successfully illustrated the effects of porosity on σDC at the surface and cross-section 

of the cathode layer [16]. The existence of pores in high volume affects the electron travel distance as 

the electron attempts to avoid the pores, thereby generating a long pathway through cathode thickness 

[16]. 

4. Conclusion 
The role of more layer numbers shows a negative effect on the electrical property of cobalt-free cathode 

SrFe0.5Ti0.5O3-δ, specifically σDC values. The introduction of a thick layer for cobalt-free SrFe0.5Ti0.5O3-δ 

cathode generates long electronic pathway, thereby degrading σDC. The further analysis of the layer 

number (thickness) optimisation is needed to be evaluated not only by observing the σDC values but also 

in terms of the cathode electrochemical performance. 
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