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Abstract. Microalgae is considered to be an important resource to address the global demand 

for sustainable energy and green technologies. Numerous applications of microalgae have 

already been identified in the past. They can be cultivated to produce food, animal feeds, 

nutraceuticals, and even biofuels. They can also be used for environmental applications such as 

carbon capture and storage, and wastewater treatment. There are different environmental factors 

that can affect the growth of microalgae such as light, nutrients, temperature, and aeration. 

Among different microalgae strains, Chlorella sorokiniana had been identified to be one of the 

most effective and commonly used strains across these different applications. In this study, the 

effect of aeration rate and light cycle on the growth characteristics of C. sorokiniana in a 

photobioreactor was investigated. Cultivation experiments were carried out at room temperature 

(24 – 26 ºC) under phototrophic conditions in which the light intensity was set to 150 µmol/m2-

s and the carbon source used was air enriched with carbon dioxide at 2.5% concentration. The 

aeration rates evaluated were 0.0125, 0.0250, 0.0500, 0.1000, and 0.2000 vvm while the light 

cycles evaluated were 24:0 (continuous illumination), and 12:12 (diurnal illumination). The 

results showed that in the 24:0 light cycle, increasing the aeration rate up to 0.1000 vvm led to 

an increase in the cumulative biomass production, specific growth rate, overall biomass 

productivity, and nitrate consumption of C. sorokiniana cultures. At 0.2000 vvm, no increase in 

any of these parameters were observed. Meanwhile, the aeration rate did not have any effect on 

the carbohydrate content of C. sorokiniana. On the other hand, cultivation under a 12:12 cycle 

resulted in a decrease in all of the parameters across all aeration rates evaluated. However, no 

significant interaction between the light cycle and the aeration rate was found in this study. 

Finally, among the conditions evaluated, the 24:0 light cycle and 0.1000 vvm aeration rate led 

to the best growth characteristics of C. sorokiniana. The results from this study indicate that 

aeration rate and light cycle have significant effects on cultivating microalgae such as C. 

sorokiniana. The results also showed that appropriate levels of these factors should be considered 

depending on the application of the microalgae cultivation. For future work, the growth of C. 

sorokiniana can be modeled to dynamically optimize these factors to improve its growth and 

reduce its cultivation costs.  

1. Introduction 

Microalgae has a lot of potential for several applications in food, animal feeds, nutraceuticals, biofuels, 

wastewater treatment, and CO2 capture [1]. However, the cost of cultivating microalgae, especially in 
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photobioreactors is currently not competitive especially for some applications such as biofuel production 

[2]. Several studies suggested ways on how to reduce the cost of cultivating microalgae such as selecting 

and bioengineering microalgae strains, doing large-scale cultivation systems, and optimizing cultivation 

factors [3,4]. In this study, the focus is to better understand the effect of factors such as aeration and 

lighting on the growth characteristics of Chlorella sorokiniana in photobioreactors to gain possible 

insights on how to enhance the microalgae cultivation by controlling these factors. 

Among microalgae strains, Chlorella sorokiniana is considered to be among the most productive 

species which can be used for food production, biofuels, and other high-valued products [5]. It is also a 

very resistant strain which is capable of growing at high temperatures and light intensity and removing 

high amounts of ammonia from wastewater [6].  

There are several environmental factors to consider for microalgae cultivation such as aeration and 

lighting. Aeration supplies gas the culture and increases mass transfer, control toxic levels of dissolved 

oxygen and inhibitory levels of CO2, avoid CO2 deficiency, prevent sedimentation and more [7-10]. 

However, excessive aeration may damage microalgae cells and incur higher energy and CO2 costs. 

Meanwhile, light is very important during phototrophic growth of microalgae for photosynthesis [11]. 

Sunlight is the most economical source of lighting for microalgae cultivation, but in some cases, there 

is still a need for artificial lighting, which may incur additional costs.  

This study aims to assess the effect of aeration rate and lighting on the cultivation of C. sorokiniana 

and to understand the role of these factors in different applications of C. sorokiniana cultivation. In 

addition, this study may serve as the basis for modeling the growth of C. sorokiniana for simulations 

and dynamic optimization to improve its growth and reduce its cultivation costs.  

2. Methodology 

2.1. Microalgae strain and culture medium 

The microalgae strain used, C. sorokiniana AK – 1, was provided by the Research Center for Energy 

Technology and Strategy in National Cheng Kung University. Seed cultures were prepared by 

inoculating 500 mL laboratory bottles containing the culture medium with small amounts of the C. 

sorokiniana AK – 1 which were initially isolated in agar plates. These seed cultures were grown at room 

temperature (i.e. 24 – 26 ºC) for 6 – 8 days. These were aerated with 2.5% carbon dioxide, illuminated 

at an intensity of 150 µmol/m2-s with TL5 lamps (Philips Co., Taiwan) and agitated at 300 rpm using 

CIMAREC magnetic stirrers (Thermolyne, USA). BG – 11 was used as the culture medium for C. 

sorokiniana since it is a standard medium for growing Chlorella sp. [12]  

2.2. Photobioreactor operation  

Standard 1-L laboratory glass bottles were used for cultivating C. sorokiniana under phototrophic 

conditions. The volume of the growth medium used was 500 mL. The seed cultures that were initially 

prepared were then used to inoculate the photobioreactor with 18 – 22 mg L-1 of microalgae respectively. 

The cultures were grown at room temperature (i.e. 24 – 26 ºC) for 9 days. These were aerated with 2.5% 

carbon dioxide, illuminated at an intensity of 150 µmol/m2-s with TL5 lamps (Philips Co., Taiwan), and 

agitated at 300 rpm using CIMAREC magnetic stirrers (Thermolyne, USA).  

Aeration was provided via an air compressor (SV – 203, 2.2 Kw, Swan Air, Taiwan) coupled with a 

CO2 tank. This assembly was connected to a gas mixing station that maintained the CO2 concentration 

at 2.5%. The aeration rate going to the cultures were then controlled via flowmeters (RMA – 026-SSV, 

Dwyer, USA). Five aeration rates, i.e. 0.0125, 0.0250, 0.0500, 0.1000, and 0.2000 vvm were used to 

grow C. sorokiniana cultures under continuous light cycle(24:0). C. sorokiniana was also cultivated 

under a 12h light/12h dark or diurnal light cycle (12:12) at 0.0500, 0.1000, and 0.2000 vvm. During the 

dark periods, the lamps were closed and the photobioreactors were covered with black paper to prevent 

light from illuminating the microalgae cultures. Lastly, cultivation for each treatment was done at least 

in duplicates. 
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2.3. Determination of biomass and nitrate concentration 

The biomass and nitrate concentrations (g L-1) of the cultures were determined regularly by respectively 

measuring the optical density of the microalgae samples at 680 nm (OD680) and their supernatants at 220 

nm (OD220) with a UV/VIS spectrophotometer. These wavelengths were also used by similar previous 

studies [13-15]. The samples were diluted to obtain an absorbance range between 0.05 – 0.9. The 

measured OD680 value of 163.1 mg L-1/OD680 was converted to biomass concentration by using a pre-

constructed calibration procedure. The same procedure was administered to quantify the nitrate 

concentration from the and measured OD220 value of 23.6 mg L-1/OD220.   

2.4. Determination of carbohydrate content  

The carbohydrate content was determined by adopting the modified quantitative saccharification method 

reported by [15]. Small amounts of dried microalgae (30 mg) were initially hydrolyzed by adding 3 mL 

of sulfuric acid (72%) and incubating them in a warm water bath in a period of 60 min. After this, the 

hydrolysates were diluted (2.5%) then autoclaved for the secondary hydrolysis. The hydrolysates were 

centrifuged and the supernatants were neutralized and analyzed using a high-performance liquid 

chromatography (L-2000 series, Hitachi, Japan). The concentrations of the sugars were calculated via 

extrapolation of measured peak areas and their pre-constructed calibration curves.   

2.5. Statistical analysis 

Different statistical tests such as Shapiro – Wilk W test and Levene test were first employed to check 

the statistical assumptions. After which, classical one-way ANOVA or Welch’s test was used to check 

for significant differences. A confidence level of 95% was employed in all statistical analyses conducted 

using the JMP statistical software.  

3. Results 

3.1. Effect of aeration rate on the growth characteristics of C. sorokiniana  

Figure 1 below shows the different time course profiles of the growth characteristics of C. sorokiniana 

at different aeration rates. In figure 1a, biomass concentration increased throughout the whole cultivation 

period and a normal pattern for microalgae growth under this type of cultivation (i.e. batch culture) was 

observed. Day 0 to 1 was the lag phase when the growth was still slow. Day 1 to 4 was the exponential 

phase where the cultures experienced rapid growth. Then day 4 to 9, the growth started to slow down as 

the cultures entered the phase of declining relative growth. This is similar to the growth curves of C. 

sorokiniana in the study of [12]. From the same figure, the final biomass concentration increased as the 

aeration rate increased. The increase in biomass concentration became smaller as the aeration rate 

increased which was evident between the 0.1000 vvm and 0.2000 vvm profiles. This indicates that it 

may not be cost-effective to further increase aeration beyond this level, at least for this cultivation setup.  

From figure 1b, pH level was lower for higher aeration rates which can be partially attributed to the 

formation of carbonic acid from CO2 addition. From this, the steep drop in pH during the first day for 

0.1000 vvm and 0.2000 vvm can be explained as a result of low CO2 utilization due to the low 

microalgae concentration at the start of the cultivation. These findings on pH level agree with the 

findings of [12], where the addition of more CO2 was actually used to decrease the pH of their 

microalgae cultures. At high pH levels, biomass production was lower due to the limitation in CO2. 

Meanwhile, too much CO2 was utilized inefficiently and was deemed as uneconomical.  

As expected, nitrate concentration decreased throughout the cultivation period as shown in figure 1c. 

In addition, it can be observed in the same figure that nitrate consumption was fastest during the time 

exponential phase and similarly it started to slow down when the microalgae cultures entered the phase 

of declining relative growth. This shows the nitrate consumption reflected the increase in biomass.  

Results from statistical tests show a reported significant difference on the cumulative biomass 

production, specific growth rate, overall biomass productivity and nitrate consumption of the C. 

sorokiniana cultures grown at different aeration rates (p < 0.05). Specifically, cultivation at 0.1000 vvm 

aeration rate led to the highest cumulative biomass production (2.543 g/L), sp. growth rate (0.542 d-1), 

overall biomass productivity (280.37 mg L-1 d-1) and nitrate consumption (76.46%). Meanwhile, aeration 
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rate had no effect on the carbohydrate content (i.e. p > 0.05), which on average, composed 27.94% of 

the dried microalgae mass.  

 

  
Figure 1. Biomass concentration (a), pH level (b), and nitrate concentration (c) of C. sorokiniana at 

different aeration rates and continuous lighting at 24h periods (CO2 concentration: 2.5 %; light 

intensity: 150 µmol/m2-s)  

3.2. Effect of light cycle on the growth characteristics of C. sorokiniana  

Figure 2 below shows the time course profiles of biomass concentration and pH level of C. sorokiniana 

under a 12:12 cycle. In figure 2a, biomass concentration generally increased throughout the whole 

cultivation period. However, biomass losses were observed after the dark periods.  

From figure 2b, the pH level of the cultures grown under a 12:12 cycle went down steeply after the 

first day due to low CO2 utilization from low initial biomass concentration. Also, as seen in the same 

figure, there are small increases and drops in the pH level throughout the cultivation period. The increase 

in pH was due to the uptake of CO2 for photosynthesis during the light period. Meanwhile, the drop in 

pH was due to low CO2 utilization during the dark period. Similar findings were reported in the study 

of [16] where the pH levels of carbon limited microalgae ponds were monitored.  

As seen in figure 3a, nitrate consumption was still high even in under a 12:12  cycle, which only went 

down by around 15% compared in continuous lighting. This indicates that C. sorokiniana is still 

effective in removing nitrates even under a 12:12 cycle. This ability suits applications such as 

wastewater treatment in which high nitrate removal rate is important.  Meanwhile, carbohydrate content 

was lower by around 50% under a 12:12 cycle as shown in figure 3b. This is most likely due to 

microalgae cells respiring their carbohydrate reserves for maintenance during dark periods [17]. Thus 

for applications which require high carbohydrate (glucose) content, (e.g. bioethanol production) it may 

be suggested to maximize the light period to maximize carbohydrate (glucose) production and 

preservation.  

(a) 

(c) (b) 
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Results from statistical tests show a reported significant difference on the cumulative biomass 

production, specific growth rate, overall biomass productivity and nitrate consumption of the C. 

sorokiniana cultures grown at different light cycles (p < 0.05). However, there is no reported significant 

difference found in any of the growth parameters mentioned at different interaction levels of aeration 

rates and lighting conditions. In addition to these, the data gathered can be used to create growth models 

of C. sorokiniana. These can be used to dynamically optimize aeration rate and light cycles to improve 

its growth and reduce cultivation costs. More importantly, the results were able to provide some basis 

for selecting appropriate conditions for applications of C. sorokinina cultivation such as wastewater 

treatment and biofuel production in terms of lighting and aeration.  

  
Figure 2. Biomass concentration (a), and pH level (b) of C. sorokiniana at different aeration rates 

and 12:12 cycle at 12h periods (CO2 concentration: 2.5 %;  light intensity: 150 µmol/m2s). 

 

  
Figure 3. Total nitrate consumption (a), and carbohydrate content (b) of C. sorokiniana at different 

aeration rates and light cycles.  

4. Conclusion  
This study investigated and demonstrated the effects of aeration rate and light cycle on the growth 

characteristics of Chlorella sorokiniana in a photobioreactor. Results showed that cumulative biomass 

concentration, sp. growth rate, overall biomass productivity, and nitrate consumption were influenced 

by the aeration rate and were highest at 0.1000 vvm during continuous lighting. Meanwhile, 

carbohydrate content was not affected by aeration rate. On the other hand, the light cycle had statistically 

significant effects on all of these parameters which all went down under a 12:12 cycle. Most notably, 

carbohydrate content went down by almost 50% due to carbohydrate (glucose) respiration during dark 

periods. Nitrate consumption also went down but only for around 15%, suggesting that C. sorokiniana 

may be still effective in removing nitrates even under non-continuously lighted conditions. These results 

show that both the aeration rate and light cycle have significant effects on cultivating microalgae such 

as C. sorokiniana. In addition, these results showed how aeration rate and light cycle affect microalgae 

cultivation for different applications. For future work, the growth of C. sorokiniana can be modeled to 

(a) (b) 

(a) (b) 
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dynamically optimize aeration and light cycles to improve its growth and potentially reduce cultivation 

costs.  
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