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Abstract. Ultrasonic wave is one of the most popular pre-treatment methods of lipid extraction 

in microalgae, due to its low energy supply requirement, eco-friendliness and excellent cell 

disruption capability. Although quite some number of experimental works were reported, the 

numerical modelling of the ultrasonic wave in understanding the working principle of ultrasonic 

irradiation is limited so far, as to the knowledge of authors. The modelling is required for a more 

robust pre-treatment optimisation. Therefore, in current work, the numerical model of ultrasonic 

wave and its cavitation has been developed using the Delfim-Soares explicit time marching 

method (DSETM), which is proposed in recent years to solve structural vibration problem. The 

two dimensional wave equation in ultrasonic scale has been solved with the frequency of 20 kHz, 

40 kHz and 60 Hz. Moreover, Rayleigh-Plesset equation is solved using the same method too to 

predict the growth of the radius of bubble due to different initial radius. It is found that higher 

wave frequency will not improve the speed of cavitation, but instead it can decrease the 

wavelength to increase the possibility of cavitation process occurrance in enhancing the pre-

treatment efficiency. 

1.  Introduction 

Microalgae are widely recognised with their high biomass production rate and energy efficiency among 

natural crops [1,2], and therefore they have been deemed as a promising source of renewable energy to 

substitute the fossil fuel [3]. The techniques of conversion of microalgae into biofuels can be found in 

many literatures [4–13] and proir to these biomass conversion, the extraction of lipids by breaking the 

lignin and hemicellulose structure is required [13,14]. In many conventional ways of lipids extraction 

(pre-treatment) such as mechanical milling [15], extrusion [16], acid/alkaline [17] and organosolv [18], 

high costing, environmental hazards and undesirable compounds formation appeared as their major 

disadvantages [13]. Ultrasonic irradiation is therefore one of the emerging pre-treatment technologies, 

which is eco-friendly and powerful in improving hydrolysis efficiency [19]. 

Ultrasonic wave is the acoustic wave with frequency ranging from 20 kHz and above, in which its 

compression and rarefactions will create acoustic bubbles. The bubbles will expand over time, and the 

void structure will implode as shock wave when critical bubble radius is developed. Such phenomenon 

is known as cavitation [20,21], and it will lead to temperature and pressure hike high enough to disrupt 

the lignocellulosic structure. The cavitation process can be illustrated in Figure 1. The point in which 
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the implosion occurs is named as hotspot. The details of the pre-treatment process due to ultrasonic 

wave can be further found in several archives [13,19–23]. 

Quite a number of works have been investigating on the production of biomass from different 

microalgae using ultrasonic method [24–28]. There are many other factors influencing the efficiency of 

ultrasonic pre-treatment such as biomass concentration, sonication intensity and power were reported 

[29–31]. However, most of the biomass investigations are limited to experimental works. The high cost 

and limited-variable range of experimental works will retard an in-depth study in microalgae pre-

treatment. With this regards, the deployment of numerical mathematics for ultrasonic wave prediction 

could be an important alternative.  

Nonetheless, the application of computational works in ultrasonic irradiation is in its infant stage. To 

the knowledge of authors, only Smithmaitrie and Tangudomkit [32] and Lais et al. [33] reported on the 

computational works in solving the fundamental ultrasonic equation with the assistance of finite element 

commercial software COMSOL. Moreover, the modelling of the ultrasonic cavitation is not available 

yet so far [33]. The very limited numerical works available in ultrasonic wave and cavitation have 

hindered further research on the computational prediction of pre-treatment efficiency and investigation 

on working principle of sonication. To fill the gap, Delfim-Soares explicit time marching (DSETM) 

Method will be applied in the current study. DSETM is proposed recently by Prof Delfrim Soares [34,35] 

to solve the structural mechanics problem, and now the method is being transplanted in current work to 

solve other hyperbolic equations in ultrasonic pre-treatment. Indeed, the method it is simpler to be 

implemented compared with conventional time discretisation as used by COMSOL for hyperbolic 

equation.  

 

 
 

Figure 1. Cavitation process due to ultrasonic wave [21]. 

2.  Mathematical modelling for ultrasonic wave equation 

The modelling of two-dimensional ultrasonic wave is governed by the pressure acoustic equation which 

can be written as in Equation (1) [32,33,36]: 
2 2 2

2 2 2 2

1 1 q qt t t
q qP P P

Q
x yc t x y

       
                   

 (1) 

where ρ is the fluid density [kg/m3], c is the speed of sound [m/s], ρc2 is the fluid bulk modulus 

[kg/(ms2)], Pt is the total acoustic pressure [kg/(ms2)], qq is the dipole source [kg/(m2s2)], Q is the 

monopole source [1/s2], t is time [s] while x and y represents the spatial coordinates [m].  Both monopole 

and dipole source are the directed acoustical sources [37], which influence the acoustic pressure at the 

far field as defined as in Equation (2) and (3) respectively: 

 
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cd
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 

 
  (3) 

in which r, λ, d and θ is the radius from the source of the acoustic vibration [m], wave length [m], 

distance between the acoustical sources [m] and angle between the acoustical sources respectively. 
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Equation (1) can be simplified into a simple wave equation by omitting the acoustical sources, as 

expressed in Equation (4). 
2 2 2

2

2 2 2

P P P
c

t x y

   
      

 (4) 

The pressure compression and rarefaction will lead to acoustic cavitation and formation of bubbles. 

Therefore, upon numerical solution on Equation (1) or (4), the pressure field need to be corresponded 

with the bubble radius, which can be described by Rayleigh-Plesset equation [33,38] as in Equation (5): 

    22

2

23 4

2

sP t P t R R R
R

t R t Rt



 

    
    

   
 (5) 

where P∞, R, ν and σs represents the atmospheric pressure [kg/(ms2)], bubble radius [m], kinematic 

viscosity of the fluid [m2/s] and surface tension of the fluid [kg/s2] respectively. The bubble radius will 

expand over time, and by reaching the critical radius, the bubble will collapse and release energy for 

cell wall disruption. Critical radius Rcr [39] can be expressed as in Equation (6): 

9

8

s
cr

s

mB T
R


  (6) 

where m, Bs and T is mass of gas in the bubble [kg], specific gas constant [J/(mol.K)] and absolute 

temperature [K] respectively. Equation (6) needs be modified into Equation (7), by assuming the 

geometry of the bubble as sphere: 
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 
 (7) 

where ρa is the density of air [kg/m3]. Upon explosion of bubble, the cavitation process will restart. By 

solving Equation (4) and (5), the contour of transient acoustic pressure and plot of bubble radius growth 

can be computed. The general numerical algorithm can be illustration in Figure 2. 

However, the time required for the radius to reach its critical value is highly dependent on the initial 

radius [39]. Moreover, Rayleigh-Plesset equation is an initial value problem, but unfortunately there is 

no mathematical equation available to predict the initialisation of bubble formation. In the work of 

Chakma and Moholkar [40], the initial radius is prescribed instead of computed. The assumption on the 

initial radius is required prior to computation. 

3.  Physical Modelling  

In current work, the ultrasonic transducer is located at the middle of the microalgae-fluid domain. The 

microalgae-fluid domain is set in square shape with area of 0.04 m2 (20 cm × 20 cm), while the size of 

the transducer is at the middle of the domain, as shown in Figure 3. The ultrasonic transducer is supplied 

with the frequency f of 20 kHz, 40 kHz and 60 kHz. The implementation of the boundary conditions 

will be further discussed in the next section. Meanwhile the fluid domain properties applied can be 

summarised in Table 1.  

 

Table 1. Applied fluid domain properties. 

 
Fluid Properties Value (Unit) 

Absolute temperature T 300 K 

Density of microalgae-fluid ρ 1000 kg/m3 

Kinematic viscosity of microalgae-fluid ν 9 × 10-5 m2/s 

Surface tension of microalgae-fluid σs 7 × 10-2 kg/s2 

Density of air ρa 1 kg/m3 

Specific gas constant Bs 8.314 J/(mol.K) 
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Based on the properties set above, the critical radius Rcr is therefore 1.871×10-5 m or 18.71 µm, 

according to Equation (7). As soon as the bubble radius develops as big as 18.71 µm, Equation (5) needs 

to be solved again. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Numerical algorithm for computation of ultrasonic wave and cavitation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Physical modelling of problem domain. 

 

 

4.  Numerical Modelling 

Time marching scheme for hyperbolic equation plays an important role in computational physics as the 

acceleration term always lead to numerical instability. Most of the time marching scheme applied is the 

central differencing time marching (CDTM), but the scheme requires three storage of memory in every 

iteration, i.e. the previous, current and future field variables. There are works [41,42] which applied the 

higher order time marching scheme, nonetheless, this will aggravate the complexity in the initialisation 

of computation. The complete review can be found also in the work of Tamma et al. [43]. 
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To mitigate the issue, Soares proposed a novel explicit time marching scheme,  [34,35], in which the 

current field variable is the only criteria to initial the hyperbolic computation. The method is simple to 

execute. Time integration of Equation (4) is: 
2 2 2
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 (9) 

where Δx, Δt and n is the node spatial distance, field variable time marching interval and current time 

step respectively, while β1 and β2 are time marching coefficients [35]. The only variable needed to 

initiate the computation is the wave excitation at the middle of the domain, which can be described as: 

 , max sin 2I JP P ft  (10) 

where (I,J) is the location of wave excitation while Pmax is the amplitude of acoustic pressure. Since the 

ultrasonic wave emits about 10 dB of sound pressure level, the corresponding Pmax is 3.1623 µPa. The 

non-reflecting boundary condition is applied. 

Now the DSETM approximation of Equation (5) is: 
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During the computation of Equation (4) and (5), the Courant Number C as defined in Equation (13), 

must be controlled within 1 to ensure numerical stability during time marching. In the current work, the 

Courant number applied is 0.5 to ensure the fulfilment of Courant-Friedrichs-Lewy (CFL) condition 

[44,45]. 

0.5
c t x

C t
x c

 
   


 (13) 

Note that the time step shall be sufficient to support the ultrasonic frequency, i.e. Δt < 1/f. Anyhow, 

Eq. (13) is ample to ensure time-marching stability indeed as 0.5Δx/c2 is always larger then 1/f. 

Meanwhile for the simulation on Rayleigh-Plesset equation is conducted with initial radius of 1.8, 2.5, 

3.4, 4.2 and 5.0 μm [40]. 

5.  Numerical Verification 

The numerical verification is done by comparing the results obtained for one-dimensional wave equation 

using DSETM and CDTM. By setting the initial and boundary conditions as described in Section 4, both 

DSETM and CDTM will produce the similar sinusoid curve as shown in Figure 4. Moreover, the 

wavelength of the wave is in accordance with the established relationship [46] between the wavelength, 

frequency and speed of sound, i.e. for frequency of 20 Hz, the wave length,   is: 

50.0172m 0.172 10 m
c

c f
f

         (14) 
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Figure 4. Sinusoid curve produced by DSETM and CDTM for one-dimensional wave equation. 

6.  Results and Discussion 

There are three possible ways in which the ultrasonic wave improves the pre-treatment: the initiation of 

cavitation, initial radius of acoustic bubble and its growth rate. The effect of wave frequency to these 

factors will be investigated. 

The effect of frequency to initiation of cavitation can be studied via the modelling of ultrasonic wave 

produced by the excitation with different frequencies. Transducer frequency of 20 kHz, 40 kHz and 60 

kHz within the time of 500 µs can be observed as in Figures 5 – 7 respectively. The higher the frequency, 

the smaller the wavelength. With the reduction of wavelength, acoustic pressure fluctuates at almost 

every location of domain within the same time frame. This will increase the possibility to implode the 

cavitation bubbles as the implosion is a direct outcome of pressure compression [47].  

 

(a) 

 

(b) 

 
Figure 5. Development of ultrasonic wave of 20 kHz at the time of (a) 200 µs and (b) 500 µs. 

 

 

 

(a) 

 

(b) 

 
Figure 6. Development of ultrasonic wave of 40 kHz at the time of (a) 200 µs and (b) 500 µs. 
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(a) 

 

(b) 

 
Figure 7. Development of ultrasonic wave of 60 kHz at the time of (a) 200 µs and (b) 500 µs. 

 

The growth of radius of the cativation bubble due to different initial radius has also been computed 

in Figure 8. The time required for bubble collapse increases with the radius of initial bubble formed. It 

can be observed that during the radius expansion, there are two patterns along the way: (a) the radius 

grows exponentially with time in general; (b) the radius expands and shrinks alternatively during the 

general exponential growth due to the pressure fluctuation. It can be clearly shown that the larger initial 

bubble will shorten the time for implosion. However, the formation of initial radius somehow is beyond 

the control of experiments [47]. Figure 8 can complement the unknown curve of radius expansion as in 

Figure 1. 

The successful implementation of the DSETM Method to solve the wave equation lays a cornerstone 

for future manipulation of more variables to model the ultrasonic wave. This may include the effects of 

increment of pressure amplitude, interference modelling (coherent or non-coherent source) and various 

possible wall boundary condition and geometry. 

However, the frequency does not influence the speed of growth of the bubble radius as shown in 

Table 2. The growth of radius is more dependent on other fluid properties. Ultrasonic wave is just a 

sparking factor to initiate the acoustic cavitation. However, it is noteworthy that frequency plays it role 

in such a way that: the higher frequency will enable more “dormant” bubbles to be geared towards 

implosion and energy release. 

 

 
 

Figure 8. The computation radius expansion using DSETM at different initial bubble radius. 
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Table 2: Implosion time required for acoustic bubble with initial radius of 5 µm. 

 
Frequency (kHz) Time required for implosion (µs) 

20 233.7228 

40 233.7228 

60 233.7228 

7.  Conclusion 

In conclusion, DSETM scheme has been extended from structural mechanics for application in 

computation of ultrasonic wave and acoustic cavitation. It is found that the high frequency does not 

increase the speed of growth of acoustic bubbles, but it does enhance the possibility for the initialisation 

of cavitation process. This study has paved a computational basis for a more complex modelling in 

ultrasonic wave and cavitation. Nevertheless, the computational works is unable to predict the hotspot 

formation and location, due to the lack of mathematical description on the spatial information of acoustic 

cavitation occurance. This could be a potential area for further investigation as well. 
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