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Abstract. The classical problem of a viscoelastic circular cylinder under its own weight is 
analysed in the Hamiltonian system. On the basis of the theory of state space for axisymmetric 
problems and the application of dual variables of stresses, the technology of variable separation 
can be used. Hence the fundamental solutions, zero eigenfunctions and non-zero 
eigenfunctions, are derived. Because of the integrity of the solution space, various boundary 
conditions can be described by certain combinations general eigenfunctions. By using the 
adjoint symplectic relations, the eigenfunction expansion approach is applied to satisfying the 
boundary conditions. 

1. Introduction 
A cylinder under the action of gravity is a classic problem for the description of the body loads [1-3]. 
Due to the property of time dependence of the materials, analytical solutions are difficult to be 
obtained. Among the researches of viscoealsticity, most of the existed techniques are based on the 
Laplace transformation. However, this procedure presents some difficulties when viscous parameters 
vary along time, or when complicated time dependent boundary conditions are imposed. A lot of 
inverse Laplace integral transforms can not be solved analytically. Thus, the numerical method of the 
inverse transform is developed rapidly. 

It is well known that classical methods to discuss the governing equations of mechanical problems 
belong to Lagrange system. To derive the exact solutions, Zhong introduced Hamiltonian theory in 
elastic mechanics [4]. The Hamiltonian system method is developed on the basis of the mathematical 
theory on symplectic geometry, in which the variable separation method can be applied. Xu et al 
discussed the traditional Saint-Venant solutions, and noticed local effects ot the eigenfunctions[5]. In 
recent years, this method achieved more and more attention, and has been widely applied into various  
branches of  mechanics. 

A new Hamiltonian method is used in this paper to analyse  a finite viscoelastic circular cylinder 
under the action of gravity. Using this approach, the complete eigenfunction space of the time domain, 
essential to satisfy the boundary conditions, is constructed, and various boundary conditions are 
described by expanding the eigenfunctions. In the numerical calculations, the results show that stress 
concentrations occur when the end is fixed, and the normal stress in the axial direction exhibits much 
more serious concentration than other stresses. Because of the time dependent property of viscoelastic 
solids, the deformation of the cylinder exhibits the creep characteristic. 
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2. Governing equations 

A viscoelastic cylinder is considered in the cylindrical coordinates ( , , )r zθ . The radius and length are 
R  and l , respectively. The constitutive relations for linear viscoelastic material can be expressed in an 
integral form 

 m
m 0 0

( , )( , )( , ) 3 ( ) , ( , ) 2 ( )
t t ij

ij

ddt K t d s t G t d
d d

ε ρ τε ρ τσ ρ τ τ ρ τ τ
τ τ

= − = −   (1) 

in which ρ is a position vector, ( )K t and ( )G t are relaxation modulus. Using the Laplace transformation, 
the constitutive Eq. (1) are rewritten as 

 m m( , ) 3 ( ) ( , ), ( , ) 2 ( ) ( , )ij ijs K s s s s G s sσ ρ ε ρ ρ ε ρ= =  (2) 

The strain energy density is 

 
2 2 22
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    (3) 

and its dual vector 

 
T{ , }r z zr rτ σ=p  (4) 

 
Using the principle of minimum total potential energy, we get the governing equations of the 
Hamiltonian system 

 ψ ψ= +H f  (5) 

where T{ , , , }rz zu w r rψ τ σ=  , { }T
,0, 0, 0 rγ=f  , and the Hamiltonian operator matrix  H is 
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 (6) 

where 2 2 2
1 2 3 4/ , / 1, ( / / 1) / (1 ), / 1r r r r r r r r v r rα α α α= ∂ ∂ = ∂ ∂ + = − ∂ ∂ − ∂ ∂ + + = ∂ ∂ − ,  ( ) 9 ( ) / [3 ( )]E s KG s K G s= + , 

and ( ) [3 2 ( )] / [6 2 ( )]v s K G s K G s= − + . 

3. Fundamental solutions 
The eigenequation is 

 ( ) ( )r rϕ μϕ=H  (7) 

where μ is an eigenevalue. The solution is 

 

1 1 1 1 1 0 2

1 0 1 1 1 2

2 1 2

2 2
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[4(1 ) ]

[ 2 4 ]
rz
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w h J h r J

r h r J

r h r J h r r J v J v J

μ β μ β

μ β μ β

τ μ β

σ μ β μ μ β

′ = + − −

′ = +

′ =

′ = + + −

 (8)  

in which 2
1 2 31 (4 4 ), 1 (2+2 ), 1 [4(1 )(1 2 )]h / E Ev h / v h / v v= − = = − − .  
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4. Numerical computations 
In this section, the geometrical data and the parameter of the Burgers viscoelastic model are selected 
as:     and 2l / R = , 1 22 4G G K= = , 1 22η η η= = . In the numerical example, the first ten eigenfunctions are 
employed to achieve enough accuracy of the results. 

 

 

 
Figure 1. Contour lines of the stress 

component / ( )z Rσ γ  
 Figure 2. The displacement at r R=   

 
It is clearly shown in figure 1 that the stress concentration appears near the fixed end, and decrease 

rapidly along the axial direction. Figure 2  exhibits the creep character of the circular cylinder due to 
the viscous action.  

5. Conclusion 
A circular cylinder under its own weight is analysed by using proposed symplectic method, and the 
final solution is be expressed by the combination of eigenfunctions. Numerical results indicate that 
local effects appear when the end is fixed, and the normal stress in the axial direction exhibits much 
more serious concentration than other stresses.  
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