
IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

The Influence of Polynomial Order in Logistic Regression on Decision
Boundary
To cite this article: Xing Wan 2019 IOP Conf. Ser.: Earth Environ. Sci. 267 042077

 

View the article online for updates and enhancements.

This content was downloaded from IP address 180.160.60.121 on 08/10/2019 at 22:06

https://doi.org/10.1088/1755-1315/267/4/042077


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IWRED 2019

IOP Conf. Series: Earth and Environmental Science 267 (2019) 042077

IOP Publishing

doi:10.1088/1755-1315/267/4/042077

1

 
 
 
 
 
 

The Influence of Polynomial Order in Logistic Regression on 
Decision Boundary 

Xing Wan 
Leshan Vocational and Technical College, Leshan, Sichuan, 614000, China 
krantson@163.com 

Abstract. In machine learning problems, polynomial logistic regression algorithms are often 
used to classify data. Compared to linear regression, polynomial regression can not only deal 
with linear problems, but also deal with nonlinear problems. In the polynomial logistic 
regression algorithm, the polynomial order has a certain influence on the classification effect. 
This paper studies the influence of the polynomial order on the binary decision boundary in 
binary classification problem. By choosing different parameter values, an approximate optimal 
solution can be found. 

1. Introduction 
Classification problems are fundamental problems in machine learning, and evaluator used for 
classification are often referred to as classifiers. Classifier uses training data for training or learning, 
called classifier construction. The trained classifier is used to predict whether a sample belongs to a 
category. Logistic regression is often used to solve the binary classification problem, that is, there are 
only two types of sample labels, which are called positive and negative examples. Usually the positive 
example is represented by 1, and the negative example is represented by 0. Since linear regression is 
used to obtain a straight line, the output is a continuous value with a large range, so it is not suitable 
for solving the classification problem, polynomial logistic regression is more suitable[2][3]. 

2. Hypothetical function 
For the two-class problem, assume that the positive case is 1 and the negative case is 0. The hypothesis 
function of the classification problem must satisfy its predicted value between 0 and 1, and the sigmod 
function[2] satisfies this property well. The sigmod function, also known as the S-type function or the 
Logistic function, is formulated as: 

                                                                             g(z) = ଵଵା௘ష೥                                                               (1) 

Among them, it is often written as exp(-z). When the S-type function is a good approximation to 
the step function. When the input is greater than zero, the output approaches 1; when the input is less 
than zero, the output approaches 0. When the input is 0, the output is exactly 0.5. The S-type function 
simulates the step function very well, the difference is that it is continuous and smooth, strictly 
monotonically increasing, and has following property: 

                                                              𝑔(𝑧)ᇱ = 𝑔(𝑧)(1 − 𝑔(𝑧))                                                  (2) 
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Logistic regression uses s-type functions, giving function g(z) with linear regression expression 𝜃்x transforming and squeezing the value of the function between 0 and 1. For input binary input 
variables, the logistic regression model is: 

                                                    h(x; θ) = g(𝜃்x) = g(𝑤଴ + 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ)                                       (3) 

Decision boundaries can help understand the effects of the results of the logistic regression 
hypothesis function: 

• When θ୘୶ ≥ 0, the forecast sample is a positive example 
• When θ୘୶ < 0, the forecast sample is a negative example 
Due to𝑤଴ + 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ, it is a straight line that divides the data into two part. The point above 

the line becomes a positive sample, and the point below the line becomes a negative sample. For the 
iris dataset, the irises are divided into Setosa and Versicolor according to petal length and petal width. 

 
Figure 1. Classification of irises 

For more complex data distributions, you can use more complex models with polynomial 
regression as shown below:  h(x; θ) = g൫θ୘x൯ = g(w଴ + wଵxଵ + wଶxଶ + wଷxଵଶ + wସxଶଶ + wହxଵxଶ + ⋯ )            (4) 

using this model, the decision boundary becomes a curve, and the shape is more complicated.  
The shape of the decision boundary is determined by the data. If it is one-dimensional data, the 

decision boundary degenerates into a point; if it is two-dimensional data, the decision boundary is a 
line or curve; if it is three-dimensional data, the decision boundary is a plane or a surface; if it is 
higher-dimensional data, the decision boundary is a hyperplane. 

Logistic regression algorithm is to find a decision boundary by learning, which can separate 
different types of data, and has certain generalization ability. 

3. Logistic regression algorithm 

3.1. Linear logistic regression 
The key problem of logistic regression algorithm is to find 𝛉, so the logistic regression algorithm 
revolves around optimizing the parameters 𝛉. First, it needs to define a cost function J(𝛉), there is a 
goal of the parameter 𝛉 optimization, and finding the lowest cost function 𝛉෡ = argmin𝜽 J(𝜽). In the 

logistic regression, the misclassified cost is expressed using a negative log-likelihood cost function, 
defined as: cost(h(𝐱; 𝛉), 𝐲) = ൜ −log (ℎ(𝐱; 𝜽))−log (1 − ℎ(𝐱; 𝜽)                                          (5) 

among them, 𝑙𝑜𝑔 represents the natural logarithm, cost(h(x; θ))  has a feature that if the real label is 1 
and the hypothesis function h(x; θ) is also equal to 1, then the cost function is 0. the cost increases 
when h(x; θ) decreases. When the true label is 0, if the assumed function is also 0, the cost become 0, 
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otherwise the cost increases as the h(x; θ) increases. There are only 2 values, so the formula can be 
written as: cost(h(𝐱; 𝛉), 𝐲) = −ylog൫h(𝐱; 𝛉)൯ − (1 − y)log (1 − h(𝐱; 𝛉))                         (6) 

Cost function J(θ) is 𝑁. The mean of the costs of the samples, expressed as follows: J(𝛉) = − ଵே ൣ∑ 𝑦(௝)log ൫ℎ൫𝒙(𝒋); 𝜽൯ + (1 − 𝑦(௝))൯ே௝ୀଵ ൧                               (7) 

If using regularization, limiting the range of values of the parameters is necessary. With punishing 
the parameters with larger values, function J(θ) can be expressed as: J(𝛉) = − ଵே ቂ∑ 𝑦(௝) log ቀ𝒉൫𝒙(𝒋); 𝜽൯ + ൫1 − y(୨)൯ቁே𝒋ୀଵ ቃ + ଵ஛ ∑ 𝑤௜ଶ஽𝒊ୀ𝟏                          (8) 

Logistic regression cannot directly obtain optimal solution of a parameter set using normal 
equations like linear regression. It can only be optimized using the gradient descent algorithm. The 
derivatives are as follows: 

                                                  பபఏ೔ 𝐽(𝜽) = ଵே ∑ ൫ℎ൫𝒙(௝); 𝜽൯ − 𝑦௝ ൯𝑥௜(௝)ே௝ୀଵ                                              (9)  

substituting the update formula θ୧ =  𝜃௜ − 𝛼 பபఏ೔ 𝐽(𝜃) with பபఏ೔ 𝐽(𝜽): 

                                                  𝜃௜ = 𝜃௜ − 𝛼 ଵே ∑ ൫ℎ൫𝒙(௝); 𝜽൯ − 𝑦௝ ൯𝑥௜(௝)ே௝ୀଵ                                    (10) 

On the surface, the logistic regression gradient descent algorithm is the same as the linear 
regression gradient descent algorithm. Because the former is a linear output and the latter is a 
nonlinear output, both usually require feature scaling to speed up the convergence. 

3.2. Polynomial logistic regression  
If the decision boundary is very complex and you can't separate the different categories with a single 
line, it is necessary to perform a polynomial transformation on the original data, adding the higher 
order items, and then using the regularized logistic regression method. h(𝐱; 𝛉) = g(w଴ + wଵxଵ + wଶxଶ + wଷxଵଶ + wସxଶଶ + wହxଵxଶ + ⋯ )                 (11) 

Adding a regularization expression to the original cost function to get a new cost function: J(𝛉) = − ଵே ൣ∑ 𝑦(௝) log൫ℎ൫𝒙(𝒋); 𝜽൯ + ൫1 − y(୨)൯log(1 − ℎ(𝒙(௝); 𝜽)൯𝑵𝒋ୀଵ ൧ + ఒଶ୒ ∑ 𝜃௜ଶ஽௜ୀଵ         (12) 

Finding the derivative of cost function 𝐽(𝜽), getting the following results: డడఏ೔ 𝐽(𝜽) = ଵே ∑ ൫ℎ൫𝑥௝; 𝜽൯ − 𝑦௝൯𝑥௜௝ +  ఒே 𝜃௜ேଵ                                          (13) 

Bringing the results to the update formula 𝛉 − α డడఏ೔ 𝐽(𝜽), the following results are obtained: 𝜃௜ = 𝜃௜ − 𝛼 ଵே ∑ ൫ℎ൫𝒙(𝒋); 𝜽൯ − 𝑦(௜) ൯𝒙𝒊(𝒋) + ఒே 𝜃௜𝑵𝒋ୀ𝟏                                 (14) 

The update algorithm is as follows: 
• Set a number of iterations 
• Set a initial 𝛉 
• Set a initial 𝜆 
• Compute cost function 
• Update every 𝜃௜ 
• If completing iteration, optimal 𝛉 is obtained. 
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When 𝛉 is obtained, adjusting parameter value of 𝜆 can find a another optimal 𝜆. Try a few more 
times, an approximate optimal value can be obtained. 

4. The influence of polynomial order on decision boundary 
In polynomial logistic regression, the polynomial order has a certain influence on the regression 
performance. If the decision boundary is more complicated, a higher order polynomial should be used, 
but the polynomial frequency is too high and the over-fitting phenomenon will occur. Therefore, there 
must be a good balance between overfitting and training error. Boundary curve by high-order 
polynomial logistic regression is obtained as follows: 

 
Figure 2. Effect of polynomial order on decision boundary 

For the more complex data distribution, you can use a more complex model like the polynomial 
regression in linear regression. The following is shown in Fig.3: When the highest order of the 
polynomial is 8, it appears Over-fitting phenomenon; When the highest order of the polynomial order 
is 2, the under-fitting phenomenon occurs, and when the highest order of the polynomial is 5, the 
fitting effect is better. 

5. Conclusion 
Based on the results and discussions presented above, the conclusions are obtained as below: 

(1) Polynomial logistic regression is usually than linear  logistic regression 
(2) Polynomial logistic regression can better classify data 
(3) Polynomial logistic regression is more suitable for nonlinear problems 
(4) The order of the polynomial is too high to easily produce over-fitting, too low to easily produce 

under-fitting, and the trade-off between training error and over-fitting must be made. 
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