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Abstract. Kalman filters are very popular in turbofan engine community for health monitoring 
purposes. In this study, in order to get better performance in terms of filtering accuracy and 
noise adaptability, an Adaptive Square Root Cubature Kalman Filter (ASRCKF) was proposed 
to estimate health parameters of the turbofan engine gas path components. In the ASRCKF 
algorithm, the mean value and covariance of the engine nonlinear function were calculated by 
cubature rule-based numerical integration method and used as a substitute for nonlinear model 
in nonlinear Kalman filter. The latest information of measurement parameters in the recursion 
and filtering process was used to estimate and self-adjust the noises cross-covariance by 
removable window method to get higher filtering accuracy. Compared with the Extended 
Kalman Filter (EKF) and Square Root Cubature Kalman Filter (SRCKF), the simulation results 
in the gradual and rapid deterioration process of turbofan engine gas path components indicate 
that the higher accuracy and faster convergence can be obtained through ASRUKF, which can 
be used in health parameters estimation and condition monitoring of turbofan engine gas path.1 

1. Introduction 
In recent years, life cycle costs of engines have been reduced despite their gradually increased 
complexity, which can be attributed to improved capacity of health management and condition-based 
maintenance of engines [1, 2]. Tracking down the performance parameters and health condition of a 
turbofan engine and its components is critical for its self-diagnosis and fault analysis. As one of key links 
of an engine, the gas path components are quite prone to failure due to harsh operating environments of 
high temperature and pressure. Therefore, how to effectively evaluate the healthy status of gas path 
components plays an important role in engine performance monitoring. 

Kalman filtering, as a real-time recursive optimal estimation method, has been widely used in engine 
condition monitoring and gas path performance analysis. Luppold [3] firstly introduced the using 
Kalman filter to engine monitoring and performance analysis. However, it has a strong dependency on 
linear models because the health and parameter assessment is conducted on the basis of linear models. In 
order to overcome this drawback, some researchers proposed the Kalman filtering methods based on 
engine nonlinear models, such as Extended Kalman Filter (EKF) [4] and Unscented Kalman Filter (UKF) 
[5]. Since EKF is actually the linearization of nonlinear system, it inevitably brings some approximate 
errors [6]. UKF can be superior to EKF in precision and adaptability, and can also avoid linearization of 
engine nonlinear system by approximating nonlinear distribution via Weighted Statistical Linear 
Regression (WSLR). However, it relies much on the experiences to choose parameters, and different 
parameters differ greatly in impact on UKF performance [7]. 
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Square Root Cubature Kalman Filter (SRCKF), as a new state estimation method proposed recently 
[8, 9], is to obtain a posteriori distribution via WSLR, and can directly calculate the mean values and 
covariance of random variables. Compared with EKF, SRCKF can avoid linearization of nonlinear 
system and Jacobian matrixes computation. Compared with UKF, SRCKF avoids parameters selection 
by experience and its impact on filters, although it shares similar basic principles of approximated 
nonlinear system distribution [10]. Considering its good performance in approximating nonlinear 
function, numerical precision and stability, and simple implementation, SRCKF is adopted in this study 
to conduct effective estimation of gas path components health parameters. Also, a new algorithm is 
proposed to improve its adaptability to noises and filtering accuracy. In this algorithm, a removable 
window method is used to estimate the noise covariance matrixes. Finally, effectiveness of this algorithm 
is tested through typical health parameter degradation of gas path components. The performance of 
SRCKF is illustrated and compared with EKF and SRUKF, and ASRCKF may be encountered on 
similar turbofan engines. 

2. Turbofan engine gas path components health monitoring 
Engine performance degradation, due to erosion, fouling or foreign/domestic object damage for instance, 
can be split into two groups: gradual deterioration and rapid deterioration. Performance degradation is 
generally represented by deterioration of component health parameters, i. e., compressor and turbine 
efficiency indices and flow capacity indices, which has great impact on engine performance [11]. 
Therefore, in order to realize gas path components health monitoring, health parameters are seen as state 
variables in engine nonlinear model. 

1 ( , )
( , )

k k k k

k k k k

x f x u w
y g x u v

+ = +
 = +                              （1） 

Where, n
k Rx ∈ is extended state variable, in which the gas path components health parameter kh  

is included. l
k Ru ∈  is input control variable, and m

k Ry ∈  is output measurement variable. kw  

and kv  are process and measurement noises, which are uncorrelated white noises. nnRQ ×∈  and 
mmRR ×∈  are variance matrixes of process and measurement noises. Notably, these parameters are all 

normalized underground test condition according to the similarity theory. 

3. Method description 
The aim of this section is to provide the mathematical background of engine gas path components health 
monitoring system based on ASRCKF. The schematic diagram of health monitoring system is shown in 
Fig.1. The basic idea of the method is that health parameters deterioration will lead to changes of 
corresponding output variables during the process of gas path components performance deterioration. 
Therefore, SRCKF is used to estimate the health parameters according to the changes of output variables 
in health monitoring system. In the meantime, there are noises and uncertain disturbance during the 
engine working process, which would affect the accuracy of the method. Therefore, the removable 
windows method is exploited to estimate the noises according to the changes of output variables, and the 
estimated values of noises can be integrated into SRCKF to improve adaptability of the monitoring 
system to noises. 
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Figure 1. Engine health monitoring system 
based on adaptive square root cubature Kalman 

filter. 

3.1. Square Root Cubature Kalman Filter (SRCKF) 
According to Bayesian reasoning principle, the core of nonlinear Gaussian filtering is to solve the 
multi-dimensional integral of nonlinear function multiplied by Gaussian density function. The Gaussian 
weighted integral of function )(xf can be computed by weighted summation of n2 cubature points, on 
the basis of the three order cubature integral rule [12]. 

[ ]







=

=

+=

+≈

=

n

i
ii

n

i
i

R

Pfw

nPf
n

dxPxNxffI
n

2

1

2

1

)(         

)1(
2
1         

),;()()(

μξ

μ

μ

                         （2） 
Where ),;( PxN μ reflects that x obeys the normal distribution with mean μ and covariance P . P

is square root of P , that is, PPP
T

= . niwii 22,1),( =，ξ  is cubature points set, in which iξ
is cubature point and iw is corresponding weighting. [ ]ii n 1=ξ stands for basic volume point, where
[ ]i⋅ is the ith point in the whole holosymmetric points set ][⋅ , and n  is n -dimensional column vector, 
and the form of [ ]1  is 
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In the meantime, round-off errors will lead to the loss of positive definitiveness or holosymmetry. 

Therefore, the square root of error covariance matrix is used to improve filtering stability. The procedure 
of SRCKF algorithm is described as follows. 

1) Initial values are set of state variables and covariance matrix square root. 
）（ TSSPSx 0|00|00|00|00|0 , =                         （3） 

2) Current state cubature points are computed. 
1|11|11|1, ˆ −−−−−− += kkikkkki xSX ξ ， ni 2,1=                （4） 

3) Cubature points are transmitted in state equation. 
),( 11|1,

*
1|, −−−− = kkkikki uxfX ， ni 2,1=                  （5） 

4) Mean values and covariance square root of predicted state points are estimated. 
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                       （6） 
Where, ()Tria is exploited to obtain the square matrix by triangularization, QS is the square root of 

process noise covariance kQ , *
1| −kkχ  is 
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Measurement update 
5) Updated state cubature points are computed. 

1|1|1|, ˆ −−− += kkikkkki xSX ξ ， ni 2,1=                  （8） 
6) Cubature points are transmitted in measurement equation. 

),( 11|,
*

1|, −−− = kkkikki uXgY ， ni 2,1=                  （9） 
7) Mean values and covariance square root of predicted measurement points are estimated. 
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Where, RS is the square root of process noise covariance kR , 1| −kkζ  is 
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8) Correlated covariance matrix is estimated. 
T

kkkkkkxyP 1|1|1|, −−− = ζχ                          （12） 
Where,  
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                    （13） 
9) Gain matrix is computed. 

1
1|,1|,1|, )( −

−−−= T
kkyykkyykkxyk SSPW                        （14） 

10) Updated state estimated values are estimated. 
)ˆ(ˆˆ 1|1|| −− −+= kkkkkkkk yyWxx                         （15） 

11) square root of updated error covariance matrix is estimated. 
]),([Tria 1|1|| Rkkkkkkkk SWWS −− −= ζχ                     （16） 

3.2. Adaptive estimation of noise matrix 
Accurate information about state variables and noises is needed, for the sake of good filtering 
performance. However, disturbed by numerous uncertain factors, the dynamic model and noise model of 
engine cannot be accurate enough. As the dynamic data processing of filters is excessively dependence 
on inaccurate models, it will lead to error accumulate on, even filtering divergence [13]. Therefore, in 
this paper, a removable window method based on data of measurement variables is exploited to estimate 
the process and measurement noise matrixes adaptively, and the noise matrixes are used for models 
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self-adjustment during the filtering process. 
Assume that the relationship between health parameters estimation and output measurement variable 

is determined, and noise variance matrixes are unknown completely or partly. Then, the removable 
window method is used for estimation of noise matrixes RQ SS , . 

The state argument 1|ˆ −kkx and new measurement values ky are exploited to define the innovation 
vector. 

1|1| ˆ)ˆ( −− −≈−= kkkkkkkk xHyxgyz                        （17） 
Where, kH is the first-order derivative of engine measurement equation )(xg at 1|ˆ −= kkxx , and 

covariance matrix of ky  is 
T
kkkkky HPHRR

k 1| −+=                            （18） 
Where, T

RRk SSR = ，
T

kkkkkk SSP 1|1|1| −−− = . The value of 
kyR is computed through sample mean of 

designated window length in removable window method. 
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， Nk >                        （19） 
Then, estimation square root values of measurement noise variance matrix are obtained through 

Eqs.(18) and (19). 
)(chol 1|1|

T
k

T
kkkkkyR HSSHRS

k −−−=                      （20） 

kxR is defined as the correction quantity of state argument vector 1|ˆ −kkx . 

1|| ˆˆ −−= kkkkx xxZ
k                              （21） 

Then, 
T
kkkkkkxk PPRQ

k
φφ 1|1| −−−+=                         （22） 

Where kφ  is the first-order derivative of engine state equation )(xf at 1|1ˆ −−= kkxx . Then, 
kxR can 

be gained by Eq. (15). 
T

kykx WRWR
kk

=                               （23） 
Since a turbofan engine works steadily most of the time, kQ can be replaced by

kxR . 
T

kykk WRWQ
k

=                               （24） 
The square root of state error variance matrix is 

)(chol kQ QS =                               （25） 
The estimation square roots QS 、 RS of process and measurement noise matrixes are introduced into 

Eq. (5) and Eq. (10) for iterative operation; thereby, the adaptive estimation of noise matrixes through 
the removable window method can be integrated into SRCKF to form ASRCKF. 

4. Application and analysis 
A low bypass ratio, separated-flow turbofan engine is used as a test case. The engine configuration is 
given in Fig. 2. The test engine is a two-shaft turbofan engine with one fan, one High-pressure 
Compressor (HPC), one High-pressure Turbine (HPT) and one Low-pressure Turbine (LPT). 
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Figure 2. Engine layout with station numbering. 
A: Intake; B: Fan; C:HPC; D: Burner; E: HPT; 
F: LPT; G:Primary nozzle; H: External bypass; 

I: Secondary nozzle. 
 

An engine nonlinear model is manipulated in Matlab, which has been validated through the engine 
test. Assume that cruise conditions are ( km0H =  , 0=Ma  , designNlNl %70=  ) are assumed. As 

shown in Table І, ],,,,,,,[ hpthptlptlpthpchpcfanfank mmmmh ηηηη=  Where, the right side of the 
equation are respectively indices of fans, HPC, HPT and LPT efficiency, as well as of flow capacity, 
which reflect health conditions of main gas path components. Eight measurement parameters, which are 
representatives of instrumentation available onboard contemporary turbofan engines, are considered to 
perform health diagnosis in Table ІІ. Engine wear is simulated by drifting values of health parameters 
and the data have been obtained. By using such simulated data, ASRCKF is exploited to track the 
gradual and rapid deterioration of health parameters. In this work, the process and measurement noise 
matrixes are set respectively as nnIQ ×= 20002.0  mmIR ×= 20002.0 , and the window length of 

removable window method is 100=N . The tracking results of ASRCKF method are compared with 
those of EKF and SRCKF methods. 

Table 1. Health parameters of turbofan engine gas path components. 
Health parameter Symbol Nominal value 

Fan efficiency indices fanη  1 
HPC efficiency indices hpcη  1 
HPT efficiency indices lptη  1 
LPT efficiency indices hptη  1 

Fan flow capacity indices fanm  1 
HPC flow capacity indices hpcm  1 
HPT flow capacity indices hptm  1 
LPT flow capacity indices lptm  1 

 
Table 2.Measurement parameters of a turbofan engine. 

Measurement parameter Symbol Unit 
LPT speed lN  rpm 

HPT speed hN  rpm 
HPC inlet total pressure 25P  atm 
HPC total temperature 25T  K 

Combustor inlet total pressure 3P  atm 
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Combustor inlet total temperature 3T  K 
LPT inlet total pressure 45P  atm 

LPT inlet total temperature 45T  K 

4.1.  Gradual deterioration 
Gradual deterioration of engine gas path components assumes a relatively slow change of the health 
parameters. Here, the flight sequence is 5000s, and the following gradual deterioration of fans is 
simulated during the flight: -2% efficiency indices, -3% flow capacity indices [14]. Gradual deterioration 
simulations with the three algorithms namely the EKF method, the SRCKF method, and the ASRCKF 
method are presented, as shown in Figs. 3～5. Fig. 3 is the tracking result of fan gradual deterioration 
with the EKF method, Fig. 4 the SRCKF method, and Fig.5 the ASRCKF method. It can be seen clearly 
that the three algorithms can track the fan gradual deterioration effectively. In comparison with the others, 
the ASRCKF method produces the best accuracy. 

Figure 3. Filtering results of fan gradual 
deterioration with EKF. 

Figure 4. Filtering results of fan gradual 
deterioration with SRCKF. 

  
Figure 5. Filtering results of fan gradual 

deterioration with ASRCKF. 
Figure 6. Comparison of RMSEs for EKF, 

SRUKF and ASRUKF. 
 

In order to compare EKF, SRCKF and ASRCKF more rationally, the average square root error 
(RMSE) is used during the whole filtering process. 

2

1

1 ˆ( )
n

k k
k

RMSE x x
n =

= −
                         （26） 

Where, n  is the number of sample points, and kx  is the real value of health parameters. Fig. 6 
depicts the RMSE comparison of the three algorithms. It can be seen clearly from Fig. 6 that both 
SRCKF and ASRCKF perform more accurate tracking of the fan gradual deterioration than EKF.   

4.2. Rapid deterioration 
Rapid deterioration of engine gas path components gives a sudden variation of the health parameters. 
Here, the following rapid deterioration of a fan is simulated at 2s:   -2.5% efficiency indices, -2% flow 
capacity indices. The tracking results of rapid deterioration of fans are shown in Figs. 7 to 9. In Fig. 7, 
EKF has bad filtering effect of fan rapid deterioration, and the maximum error of HPT efficiency indices 
is about 1.5% at the rapid deteriorative point. This phenomenon is due to the fact that EKF has poor 
adaptability of nonlinearity, which exists at the health parameters sudden variation points. Fig. 8 and Fig. 
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9 are the results of SRCKF and ASRCKF, and the results clearly show that the accuracy of SRCKF and 
ASRCKF is superior to that of EKF. SRCKF and ASRCKF can obtain nearly three order accuracy of 
engine nonlinear object through the numerical integral method; therefore, the accurate estimation of 
rapid deterioration can be achieved. In the meantime, the adaptive estimation of noise matrixes is 
integrated into the SRCKF to modify the engine model, which makes ASRCKF get faster convergence 
speed and higher accuracy. It can be seen clearly from the comparison of errors in Fig. 10, and accuracy 
of the three algorithms is listed as: ASRCKF>SRCKF >EKF. 

As for gradual and rapid deterioration of other components, ASRCKF is also able to achieve a good 
effect in filtering tracking. It cannot be discussed here for lack of space. 

  
Figure 7. Filtering results of fan rapid 

deterioration with EKF. 
Figure 8. Filtering results of fan rapid 

deterioration with SRCKF. 

  
Figure 9. Filtering results of fan rapid 

deterioration with ASRCKF. 
Figure 10. Comparison of RMSEs for EKF, 

SRUKF and ASRUKF. 
 

5. Conclusions 
In this contribution, an adaptive estimation algorithm based on SRCKF and the removable window 
method is proposed to improve the accuracy and noise adaptability of engine gas path components health 
parameters. In this algorithm, SRCKF performs a good tracking ability of components deterioration 
based on the data from the measurement variables, and the removable window method estimates the 
noise matrixes to improve the accuracy and noise adaptability. The simulated results, which are 
presented and compared with EKF and SRCKF, show that ASCKF has the advantages of higher 
accuracy, better noise adaptability and simpler implementation, and can be used for engine gas 
components health monitoring.  
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