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Abstract: Effects of CO2 dilution and composition on tip opening and flame OH radical 
distribution in laminar non-premixed Bunsen flame were investigated by using planar laser 
induced fluorescence (PLIF) technique. Experiments were conducted at different component 
fractions diluted with CO2 at 20%, 25%, and 30%. The syngas were produced by biomass 
catalytic gasifying. Stretch rates were calculated and combined with OH-PLIF images and 
simulation. We conducted kinetic simulation to analyze the production of OH radical. Results 
show that as VH2 increases and hydrogen slightly increases, the effect of mass diffusion is 
enhanced , in addition, the value of stretch rate decreases, and the tip opening becomes further 
obvious. The profile of OH radical distribution also becomes broad. Finally, the total 
production rates of OH radicals increases with a rate less than 7.5%. Hence, the maximum 
value of OH radical counts is reduced by 33.33%, 27.92%, and 23.09%. Nonetheless, with the 
increasing addition of CO2, the effect of mass diffusion is weakened; besides, chemical 
reaction residence time increases, and the value of stretch rate increases; the tip opening is less 
obvious. Although the distribution area of OH was narrowed, its production decreased and the 
relative concentration of all OH radical decreased. 

1. Introduction  
In general, fossil energy reserves are limited and cause serious pollution problems, Therefore, 
substitute energy is urgently needed. Hydrogen energy is a potential energy to solve this problem due 
to its clean emissions, high efficiency and reproducibility[1]. Biomass energy is widely distributed and 
easily acquired. It is also a low-cost and appropriate carrier of hydrogen energy. Up to now, in the field 
of hydrogen production from biomass pyrolysis, different kinds of biomass materials, reactors, 
catalysts, and reaction parameters settings have been researched to raise the output of hydrogen,[2, 3] 
Meanwhile, the biomass gasifying technology has gathered further attention because of its promotion 
in hydrogen gas production[4, 5]. In summary, VH2 can reach up to 50% for biomass pyrolysis, and 
VH2 increases to 60% when biomass gasifying technology is applied. Moreover, VCO2 is approximately 
25 % (±%5). 

High calorific value gas with large volume fraction of hydrogen is the greatest strength of biomass 
gasifying technology. On this basis, syngas from biomass by catalytic steam gasification can be 
applied to gas turbines.[6] Moreover, previous studies have focused on CO/H2 or CH4/H2. However, 
little attention has been devoted to syngas, which is consist of multiple gases. Therefore, syngas 
non-premixed combustion should be researched. 

Owing to the high sensibility, short response time and small interference of the planar laser induced 
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fluorescence (PLIF) technology, accurate data are obtained when  conducting experiments. Therefore 
PLIF technology has become a hot spot in combustion researches[7, 8].The burning velocity of 
syngas-type fuels have been measured by different methods, such as Heat flux method[9] and Bunsen 
flame method[10]. These methods pay much attention on equivalence ratio and CO2/N2 dilution.[11-13] 
Besides, others are focused on OH distributions[14]. The flame structure of syngas combustion has 
been intensively researched. Fu et al.[15] conducted experiments on laminar flame structure of syngas 
for XH2 ranging from 20% to 100% and equivalence ranging from 0.5 to 1.8. Tu et al.[16] studied the 
laminar flame structure with different XH2 at equivalence of 1.0, their results showed that as the XH2 
increases up to 40%, the shape of the flame structure resemble a “W”. Wang et al.[17] studied stretch 
and preferential diffusion on tip opening, their result showed that the tip opening is enhanced as the 
equivalence decreases, and the hydrogen fraction and the Reynolds number increase. Tran et al.[18] 
studied the tip openings in Bunsen flames, their results showed that the tip opening occurs at a 
constant equivalence ration.  

The present study aims to focus on the effects of components fraction, CO2 dilution on tip opening 
and OH radical distribution of laminar non-premixed Bunsen flames by using OH-PLIF technology. 
The measurement of laminar non-premixed syngas Bunsen flames will be conducted at different 
components fractions varying from 20% to 65% for hydrogen, 10% to 40% for carbon monoxide, 3% 
to 15% for methane, and 20%, 25% and 30% for CO2 dilutions. Moreover, the velocity vector of the 
flow at different conditions will be numerically simulated using FLUENT 6.3.26. we will calculate 
stretch rates quantitatively to analyze the effect of components fractions and CO2 dilutions on tip 
opening by using the experiment data and numerical simulation data. The distribution of OH radicals 
will be discussed by using the OH-PLIF images subtracted with background noise and corrected with 
the laser beam profile. 

2. Experimental setup and procedures 

2.1 Experimental apparatus 
The non-premixed Bunsen flame was measured using Planar Laser Induced Fluorescence (PLIF) 
technique. The experimental apparatus includes three parts: OH-PLIF system, gas supply system and 
laminar non-premixed Bunsen burner. The OH-PLIF system consists of a laser source, that comprises 
an Nd: YAG laser as a pump laser, a tunable dye laser, a set of reflecting mirrors and optical lens, 
equipment for the fluorescence signal detection and data acquisition and software.  

The wavelength of 355 nm light from the YAG laser was used to pump a dye laser, the dye laser 
generated 567.110 nm light, which was then doubled to 283.555 nm UV light by a double frequency 
crystal. The laser is used to excite the OH base transition and form a 50 mm high and 0.8 mm thick 
sheet through the flame center after passing through the lens group. OH fluorescence signal is received 
by ICCD camera (LAVISION, VC14-0120) with UV lens (UV-60 mm, F3.5s), a filter LIF for OH 
(LAVISION, VZ14-0353). The maximum energy of a single laser shot was about 13 mJ. The length of 
the object that the ICCD camera records is calibrated by a graduated plate with the system software 
Davis 8. The gate and delay of the ICCD camera are set to 100 ns and 60 ns, respectively, for 
minimizing the effects of ambient lights. The gain of the intensifier was increased to 60% to optimize 
the captured fluorescence signals. The schematic of the experimental system is shown in Fig. 1. 
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Figure 1. Schematic of OH-PLIF and gas delivery system 

H2/CO/CH4 mixtures with CO2 dilution were tested in this study. The experiment was operated at 
atmospheric pressure, room temperature and Reynolds number equals 2000. The purity of H2, CO, and 
CH4 were over 99.99%. VH2 (VCO, VCH4) is the volume fraction of H2 (CO, CH4) in the syngas fuel. 
Similarly, VCO2 is used as the CO2 volume fraction in the syngas fuel. The volume flow of each gas 
was controlled by flow meters. Then, it was mixed in a stainless chamber before entering the burner. 
The diameter and length of Bunsen burner is 5 mm and a length of 26 cm, respectively. 

Table 1. Fuel composition 
Fuel VCH4/ (%) VH2/ (%) VCO/ (%) VCO2/ (%) hydrogen content/ 

per mole gas (mol) 
A1 15.7 25.0 39.3 20.0 1.10 
A2 12.8 35.0 32.1 20.0 1.22 
A3 10.0 45.0 25.0 20.0 1.24 
A4 8.3 51.0 20.7 20.0 1.32 
A5 7.1 55.0 17.9 20.0 1.42 
A6 4.3 65.0 10.7 20.0 1.44 
B1 14.7 23.4 36.8 25.0 1.03 
B2 12.1 32.8 30.1 25.0 1.14 
B3 9.4 42.2 23.4 25.0 1.16 
B4 7.8 47.8 19.4 25.0 1.24 
B5 6.7 51.6 16.7 25.0 1.33 
B6 4.0 60.9 10.0 25.0 1.35 
C1 13.8 21.9 34.4 30.0 0.96 
C2 11.3 30.6 28.1 30.0 1.07 
C3 8.8 39.4 21.9 30.0 1.09 
C4 7.3 44.6 18.1 30.0 1.16 
C5 6.3 48.1 15.6 30.0 1.24 
C6 3.8 56.9 9.4 30.0 1.26 

2.2 Experiment method 
The syngas studied in this experiment is a mixture of simplifications of gases such as C2H2 and C2H4 
which have been verified by related literature [19-21] and negligible amounts of other components are 
not considered.   

According to the relevant data, the CO2 stays at 20%-30%,furthermore some other gas such as 
ethane, or ethylene takes a small account. We simplified these data into three groups (A-B-C）, the CO2 
dilution rate is at 20%, 25%, and 30%. (see Table 1.) From A1 to A6, VH2 increased, VCO2 remained at 
20%; moreover, the relative contents of CH4 and CO remained as 2.5, and the hydrogen content 
increased slightly. From A1-B1-C1, VCO2 gradually increased, whereas the other relative contents 
remained basically unchanged(1/1.6/2.5). 

The FLUENT 6.3.26 is used to calculate the velocity vector of the flow at atmospheric pressure and 
room temperature. Regardingr the material, the syngas was defined according to Table .1, and the 
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relevant settings refer to the research of Wang et al. GRI3.0 kinetic mechanism and OPPDIF model is 
used to calculate the production rates of OH radicals and the normalized sensitivity coefficient on 
dominants reactions by Chemkin-pro software. Related settings are used as reference for analyzing the 
OH radical distribution.[22] To be synchronous with the experimental results, simulation conditions 
are made in consistent with the experimental conditions. 

2.3 Data processing method  
For each condition, 200 instantaneous OH-PLIF images were processed for statistical analysis. The 
images were subtracted with background noise and corrected with the laser beam profile. The OH 
concentration and the reaction zone indicated by OH were seen from the OH-PLIF images. The flame 
front structure were also seen. 

The stretch rate is an important parameter closely related to the local combustion characteristics of 
the flame. The OH-PLIF image processing minimized other effects,  therefore, the flame obtained in 
the experiment was a stable flame surface. The expression for the stretch rate κ is as follows:[17] 

)( nn s ××∇⋅−= νκ                        (1) 
The OH-PLIF images proved that the OH profile was almost symmetrical. The left side was chosen 

for analysis. On the basis of the OH-PLIF images, the polynomial of the two dimensional flame front 
surface can be expressed by f(x),and n  is defined as normal vector at the flame front，and sv  is 
defined as unburned syngas velocity vector(flow velocity vector). By substituting the vector sv  and 
n  into Eq.(1), the stretch rate can be expressed as： 
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The first and second terms of the equation indicated the effect of flow strain and the flame 
curvature to the stretch rate. They can be presentedt as sκ  and cκ , respectively. The effect of κ  to 
the flame tip opening, the OH concentration and the reaction zone indicated by OH will be discussed 
in the study. 

The data processing of the stretch rate are as follows. In accordance with  the OH-PLIF images, 
over 50 coordinate points on the flame front surface were used to fit a polynomial expressed as f(x). 
Then the data df(x)/dx and d2f(x)/dx2 in Eq. (2) could be directly calculated. The data u and v of the 50 
coordinate points are obtained from a simulation. Two polynomials, namely, u(x, y) and v(x, y) were 
obtained. Then, the data of yvxvyuxuvu ∂∂∂∂∂∂∂∂ /,/,/,/,,  could be obtained. The stretch rate 
was calculated by substituting the data calculated above into Eq. (2). 

3. Results and discussions  

3.1 Effect of hydrogen components fractions on tip opening  
Fig.2 shows that the OH-PLIF images varied from components fractions, as the conditions A1 to A6 
show in Table.1.These images also proved that OH concentration was almost zero at the tip of the 
flame, and the OH regions were distributed on both side of the syngas flow independently. OH radicals 
are important intermediate products of combustion, it is used to represent the reaction zone; it 
indicates that the combustion intensity is nearly zero at the tip of the flame and tip opening 
phenomenon is happened. What’s more, from condition A1 to A6, the tip opening becomes more 
obvious. And the OH-PLIF images of conditions B1-B6 (C1-C6) present the same situation when 
compared to A1-A6. The effect of components fraction on tip opening will be analyzed quantitatively 
by calculating the stretch rates. 

Fig. 3 showed that stretch rates varied from different components fractions. The graphics were 
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created by utilizing Origin85. The origin of coordinates is the center of the tube where the syngas 
comes. H is the height above the burner outlet. Fig. 3(a) shows that κ is negative at the beginning, 
with the increase in H, κ increases sharply, and the κ  of condition A6 shows the fastest growth 
rate.κ  becomes gentle at the position near H=30 mm, κ remains stable at H=30~70 mm at a value at 
approximately -7 s-1, and then shows a decreasing trend. From condition A1 to A6, the absolute value 
ofκ increases at H=0~30 mm, whereasκ is almost the same at H=30~70 mm. The κ  of condition A6 
shows a decreasing trend first, whereas the κ  of condition A1 is the last when continuously 
increasing H. 

The values of sκ  are shown in Fig. 3(b). The figure shows the same variation trend as κ , and the 
value is almost equal to κ , indicating that the effect of flow strain plays a leading role to the variation 
of κ . Moreover, from condition A1 to A6, the value of sκ  decreases due to the following reasons: 
first, the increase in hydrogen content increases the instability of the flame; second, the mass 
diffusivity increases as the volume fraction of H2 increases and the volume fractions of CH4 and CO 
decrease. As a result, the flow becomes more unstable and the effect of flow strain is enhanced.  

The values of cκ  are shown in Fig. 3(c). The figure shows that the values of cκ are smaller than 
those of κ ; cκ of A1 at H=30~70 mm is approximately zero. The curvature is approximately zero 
because the slopes of points κ  on the flame front surface are approximate. With the increase in 
height H, the curvature at the flame tip decreases, thereby resulting in the decrease in cκ . From A1 to 
A6, the areas, where cκ  is approximately zero becomes smaller, and the value of cκ  decreases due 
to the increase in mass diffusivity contributed by H2. Moreover, as cκ  changes with different 
component fractions, the approximate shape of the flame front surface changes from “U” to “V”. 
Moreover, the κ , sκ , and cκ of conditions B1–B6 (C1–C6) play the same variation trend when 
compared with A1–A6. 

In summary, from condition A1 to A6 (B1–B6 and C1–C6), the hydrogen content in syngas 
increases. Consequently, the mass diffusivity increases, and the effect of mass diffusion is enhanced; 
thus, the tip opening tends to be more evident. From a quantitative angle, the value of κ  decreases 
from A1 to A6 (B1–B6 and C1–C6), the negative stretch at the flame tip is enhanced, and the tip 
opening becomes more evident consequently. 

 
Figure 2. OH-PLIF images of the flames varying with component fractions 
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Figure 3. Stretch rates varying with components fractions at 20% CO2 dilution: (a) stretch rate; (b) 

stretch rate contributed by flow strain; (c) stretch rate contributed by curvature. 

3.2 Effect of CO2 dilution on tip opening   
Carbon dioxide and nitrogen are inert gases. In diffusion combustion, the carbon dioxide content of 
biomass syngas is not fixed, and the nitrogen involved in combustion mostly belongs to the ambient 
air. However, the nitrogen component in synthesis gas is extremely low, even neglected. Therefore, 
carbon dioxide has more practical value than nitrogen in the study of the effect of diluted gases on 
combustion characteristics.  

The OH-PLIF images at different CO2 dilutions are shown in Fig. 4, and conditions A1, B1, and Cl 
are shown in Table 1. The OH-PLIF images show that the OH profile looks similar to Fig. 2. The 
opening at the flame tip becomes less evident with the increase in the CO2 added. The OH-PLIF 
images of all the other conditions, such as A2, B2, and C2 and A6, B6, and C6 show the same situation 
as that of A1, B1, and C1. The effect of CO2 dilution on the tip opening is analyzed quantitatively by 
calculating the stretch rates. 

Fig. 5 shows that the stretch rates vary from CO2 dilutions at 20%, 25%, and 30%. Fig. 5(a) shows 
thatκ  is negative at the beginning, and with the increase in H, κ  increases slowly. As the CO2 
addition increases, the height, where κ  becomes steady, shifts to the burner outlet. The value of κ  
fluctuates at -5s-1 at H=25~65 mm. With the increasing addition of CO2, κ  of conditions B1 and C1 
slightly increases and shows a decreasing trend at a position near H=65 mm. The values of sκ  are 
shown in Fig. 5(b), which presents the same variation trend as shown in Fig. 3(b). The value of sκ  is 
approximately the same as that of κ , thereby indicating that the effect of flow strain takes the 
dominant role. Moreover, the value of sκ  slightly increases with the increase in the added CO2. The 
reason is that the mass diffusivity decreases as the volume fraction of H2 increases. Consequently, the 
effect of flow strain is weakened. The values of cκ  are shown in Fig .5(c). The figure shows that cκ  
is almost equal to zero at H=30~70 mm, and with the increase in CO2 dilution, the region, where cκ  
is approximately zero, becomes larger. The main reason for this phenomenon is the decrease in the 
hydrogen components as the CO2 dilution increases. Thus, the effect of mass diffusion decreases and 
the flame front surface tends to be straight. The κ , sκ , and cκ of other controlled trials (such as 
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A2-B2-C2) present the same variation trend when compared with A1, B1, and C1. 
In summary, from condition A1 to B1 to C1 (A2, B2, and C2), the relative content of other 

components remains unchanged whereas the addition of CO2 increases. One the one hand, as the 
volume fraction of carbon dioxide increases, the hydrogen content in syngas decreases, the mass 
diffusivity decreases, and the effect of mass diffusion is weakened. On the other hand, the temperature 
decreases as the CO2 increases, and the chemical reaction residence time increases. Thus, the front 
surface tend to be more contractive. From a quantitative angle, κ  increases from A1 to B1 to C1 (A2, 
B2, and C2), and the negative stretch at the flame tip is weakened. Thus, the tip opening becomes less 
evident. 

 
Figure 4. OH-PLIF images of the flames varying from CO2 

  
Figure 5. Stretch rates varying from CO2 dilution: (a) stretch rate; (b) stretch rate contributed by flow 

strain; (c) stretch rate contributed by curvature. 

3.3 Effect of component fraction on flame OH radical distribution 
Fig. 2 shows the OH-PLIF images of flames with 20% CO2 dilution varying from different component 
fractions, and the conditions A1 to A6 are shown in Table. 1. The OH-PLIF images show that the 
profile of OH radical distribution becomes broader, and the first image from the left of Fig. 4 is the 
narrowest, whereas the sixth image is the broadest. The reason is the increase in the hydrogen content 
from conditions A1 to A6. With the increase in hydrogen content, the effect of diffusion is promoted 
due to the high mass diffusivity of H2. As a result, the region, where combustion occurs, becomes 
broaden.  
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Figure 6. Production rates of OH radicals 

 
Figure 7. Normalized sensitivity coefficients on dominant reactions at different component fractions 

Furthermore, the OH-PLIF images suggest that the maximum value of OH radical counts of 
condition A1 is 1440 (B1:1026, C1:733). As the condition changes, the value decreases to 960, 740, 
and 564 with reducing rates of 33.33%, 27.92%, and 23.09% respectively, and the OH radical 
concentration becomes smaller. The reasons for this phenomenon are as follows: on the one hand, as 
shown in Table 1 shows, the hydrogen content slightly increases from A1 to A6 (B1–B6, C1–C6). 
Therefore, the potential production of OH radicals has no evident change. Fig. 6 shows that the total 
production rates of OH radicals have no evident difference when hydrogen content slightly increases 
from A1 to A6. Meanwhile, Fig. 8 shows that the peak values of total production rates of OH radicals 
slightly increase with a rate less than 8%. These findings indicate that the production of OH radicals 
slightly increases, thereby verifying the previous statement. Moreover, Fig. 7 shows that with the 
slight increase in hydrogen content, the promotion effect on the reactions of OH production slightly 
increases (such as R3), and the inhibitory effect on the reactions of OH consumption slightly decreases, 
thereby verifying the statement once again. One the other hand, the profile of OH radical distribution 
becomes broader. As a result, the OH radicals are more scattered, and the OH radical concentration 
becomes smaller. Moreover, conditions B1–B6 (C1–C6) play the same situation when compared with 
A1–A6. 
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Figure 8. Peak value of total production rates of OH radicals  

 
Figure 9. Production rates of OH radicals 

Fig. 4 shows OH-PLIF images of flames vary from different CO2 dilution, as the conditions A1, B1, 
C1 show in Table. 1. It is figured out from the OH-PLIF images that the maximum value of OH radical 
counts changes from 1440 to 733, it is reduced by 49.07%, and OH radical concentration shows a 
decreasing trend, two reasons may contribute to this phenomenon. On the one hand, with the 
increasing addition of CO2, the percentage of fuel in syngas decreases and the hydrogen content 
decreases, as a result, the production of OH radicals decreases, and it is seen from  Fig.9 that the total 
rate of production of OH radicals decrease significantly from condition A3 to B3 to C3 (A1, B1, C1 et 
al. present the same situation), and it is figured from Fig.8 that the peak values of total production 
rates of OH radicals decrease a lot with a rate about 20%, these two facts indicate that the production 
of OH radicals decreases a lot; on the other hand, with the increasing addition of CO2, the heat 
capacity increases. As a consequence, the flame temperature reduces, and the production of OH 
radicals is further reduced consequently. What’s more, with the increase of CO2 dilution, the profile of 
OH radical distribution becomes narrower. That would be due to the decrease of the flame temperature. 
As the flame temperature decreases, the burning velocity of flame decreases, as a result, the chemical 
reaction residence time increases, the OH radicals are more concentrated and the profile of OH radical 
distribution becomes narrower. The OH-PLIF images of conditions A2, B2, C2 et al. present the same 
situation when compared to A1, B1, C1, the maximum value of OH radical counts reduced by 
41.25%~49.7%. 

4. Conclusions  
The effect of component fractions and CO2 dilution on tip opening and flame OH radical distribution 
of non-premixed Bunsen syngas mixture flames was investigated using OH-PLIF technique. The main 
results are summarized as follows: 

Tip opening is evidently observed from the OH-PLIF images and the stretch rates are calculated 
accurately. Therefore, the phenomenon of the diffusion flame tip opening is caused by the negative 
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tensile action at the tip, where the stretching caused by the flow field inhomogeneity plays a leading 
role, and the curvature, which is the negative stretching effect caused by stretching, is negligible 
compared with the flow stretching. 

As the VH2 in syngas increases, the mass diffusivity contributed by H2 increases. As a result, the 
effect of mass diffusion is enhanced and the value of stretch rate decreases. Thus, the tip opening of 
laminar non-premixed Bunsen flames tend to be more evident. As the CO2 dilution increases, VH2 in 
syngas decreases. Consequently, the chemical reaction residence time increases, the effect of mass 
diffusion is weakened, and the value of stretch rate increases. Therefore, the tip opening of laminar 
non-premixed Bunsen flames tend to be less evident. 

As the VH2 in syngas increases and hydrogen content in syngas slightly increases, the total 
production rates of OH radicals slightly increase with a rate less than 7.5%. However, the profile of 
OH radical distribution becomes much broader. Thus, the maximum value of the OH radical counts 
reduces by 33.33%, 27.92%, and 23.09%, the OH radicals are more scattered, and the OH radical 
concentration decreases. As the CO2 dilution increases, the production of OH radical is reduced due to 
the decrease in flame temperature. The percentage of fuel in syngas and the production rates of OH 
radicals decrease by approximately 20%. As a result, the maximum value of OH radical counts is 
reduced by 41.25%~49.7%, and the OH radical concentration decreases. 
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