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Abstract. The low fuel consumption and efficient power usage in diesel engine has made 

diesel engine as the more appealing option in comparison with other type of engines. To raise 
the performance of DI (direct injection) diesel engine further, injection timing and intake 

pressure variation were studied under 2000 RPM (rotation per minute) engine rotation. This 

experiment used DI diesel engine with single cylinder. The length of stroke was set to 96.9 mm, 

the diameter of bore was set to 85 mm and the compression ratio of the engine was 16.3. The 

variations of main injection timing were set for 1° after TDC (top dead centre) as advanced 

injection timing, and 3° after TDC as retarded injection timing. Boost pressures for intake 

pressure were varied with 20 in increments and started from 0 KPa to 60 KPa. In-cylinder 

pressure characteristics and heat release rate were used to evaluate the engine performance. 

The experiment indicated, as the boost pressure raises, the heat release rate and in-cylinder 

pressure are increased. The main injection timing advancement from 3° after TDC to 1° after 

TDC causes increase to the peak of in-cylinder pressure after TDC in DI diesel engine. This 

phenomenon is due to the slower combustion in retarded injection timing. For heat release rate, 
the advancement of injection timing causes the differences between various intake pressures to 

be more apparent. 

1. Introduction 

Compression ignition (CI) engine, due to their excellent fuel efficiency and durability, has become the 

popular power plant for automotive application. This is globally the most accepted type of internal 
combustion engine used for powering agricultural implements, industrial applications, and 

construction equipment along with marine propulsion. However, emissions from diesel engines have 

been focused in increasingly stringent emission regimes because of their adverse health impact on 

humans. Diesel particulates are classified as ‘probable carcinogen’. Under tremendous pressure to 
comply with increasingly stringent emission norms adopted worldwide, mass emissions of particulate 

matter (PM) from diesel engines have been significantly reduced by automotive OEMs (original 

equipment manufacturers) by employing improved exhaust gas after-treatment technologies [1]. In 
diesel engines, it is rather difficult to lower NOx and PM emissions simultaneously due to soot-NOx 

trade-off. High NOx and PM emissions are still the main obstacle in the development of next 

generation conventional diesel engines. 
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Combustion, performance and emission characteristics of diesel engines depend on several factors 
including fuel injection timing (FIP), start of injection (SOI), fuel quantity injected, number of 

injections (post- and pilot-), design of combustion chamber and nozzle spray patterns. High-pressure 

direct injection (HPDI) seems to be one of the most efficient ways to comply with the stringent global 
emission norms. FIP for different generation of diesel engines varies from 200 to 2000 bars. Kato et al. 

[2] demonstrated using high fuel injection pressures as a means to reduce PM emissions without 

increasing NOx emissions. High FIP seem to induce a very different spray structure than low FIP 
sprays used earlier [3]. This is mainly due to cavitation created in the nozzles at high FIP, which 

results in significantly faster atomization [4].  

Other studies [5,6] showed that higher FIP improve fuel–air mixing, followed by faster combustion, 

which directly influences pollutant formation. Diesel spray characterization is usually done for 
parameters such as spray tip penetration, spray angle, droplet velocities, droplet sizes and distributions, 

and global spray structure. A good understanding of these characteristics is essential for increasing the 

combustion efficiency and reducing the environmental impact. High pressure difference across the 
injector nozzle is necessary to atomize the liquid fuel into small droplets in order to enable rapid 

vaporization as well for high jet penetration in the combustion chamber [7,8]. Droplets size 

distribution of a spray fundamentally affects CI engine combustion. Smaller fuel droplets vaporize 

rather quickly compared to larger droplets however their penetration is shorter therefore the size 
distribution needs to be optimized. Chen et al. reported that small droplets and high penetration depth 

of fuel jet enhances the fuel–air mixture quality, which provides shorter ignition delays and more 

complete combustion [8,9]. Lower FIP gives larger droplet diameters, and thus increasing ignition 
delay during combustion [9]. This also leads to higher cylinder pressures, which ultimately results in 

higher NOx emissions. When FIP increases, spray droplet diameter distribution reduces. This leads to 

improved fuel–air mixture formation because of superior mixing during ignition delay, therefore 
smoke and CO emission are reduced [10]. However, if FIP is too high, ignition delay period becomes 

too short. Hence, possibility of homogeneous mixing decreases and as a result, combustion efficiency 

is reduced [11]. Bruneaux [12] investigated spray characteristics of common rail direct injection 

(CRDI) system in a high pressure, high temperature cell, which created conditions existing in a typical 
diesel engine. An increase of FIP was found to enhance the fuel atomization at the nozzle outlet, 

resulting in more distributed vapor phase, which improves mixing. Hence the fuel injection strategy is 

an important parameter in diesel engines to optimize the combustion, performance and tailpipe 
emissions. 

These injection parameters also affect the particulate emission from diesel engines. High compression 

ratios, along with relatively high oxygen concentration in diesel combustion chamber deliver excellent 
thermal efficiency, and low CO and HC emissions in contrast with a comparable gasoline engine [13]. 

However, mass of particulates emitted from diesel engines are generally 10–100 times higher than SI 

engines [14–16]. Particulates are of concern from engine performance, durability and harmful 

environmental impact. Higher particulate emissions result in reduced fuel economy because of fuel 
loss due to the incomplete combustion. Interaction of these particulates results in increased wear of the 

engine components. Agarwal et al. [16] carried out experiments to investigate the characteristics of 

particulates and concluded that lubricating oil contaminated by diesel soot is a key factor responsible 
for higher engine wear [17].  

Particulates have adverse environment impacts such as they affect human and live-stock health, lead to 

poor visibility, and soil the buildings. While attempting engine optimization, it is required to consider 

particulate numbers as well with the particulate mass. Methods used for reducing the particulate mass 
such as increasing FIP, use of variable geometry turbochargers (VGT) and diesel particulate filters 

(DPF) tend to increase particulate numbers by reducing their size, which is likely to be more harmful 

for human health [18,19]. A serious study on the diesel particulate characterization is important 
because a significant proportion of diesel particulates have aerodynamic diameters less than 1 µm. 

Diesel particulates in this size range have a high probability of being inhaled and deposited in the 

respiratory tract, and potentially cause respiratory diseases and consequently damage the lungs [20,21]. 
Particles emitted from diesel engines can be completely characterized by gravimetric measurements, 

particle number size distribution, particle surface area-size distribution, particle volume-size 
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distribution, soluble organic fraction (SOF), elemental trace metals, elemental carbon (EC), organic 
carbon (OC), total carbon, and polycyclic aromatic hydrocarbons (PAHs) [22–26]. Agarwal et al. [16] 

reported an increase in particle number concentration at lower engine loads and particle number 

concentration reduction at higher engine loads with addition of 20% biodiesel to diesel.  
In the present investigation, a flexible single cylinder research engine was used to experimentally 

evaluate the effect of fuel injection timings and FIP on combustion, emissions and performance. 

Mineral diesel was used as test fuel. This engine is capable of precisely controlling fuel injection 
parameters such as FIP, SOI and injected fuel quantity. The effect of variations in these parameters on 

engine combustion, performance and emission characteristics is evaluated. For particulate size and 

number distribution, engine exhaust particle sizer (EEPS) was used. 

2. Experimental setup and procedure 
In this experiment, diameter of the engine bore was set to 85 mm, the length of the stroke was set to 

96.9 mm and the compression ratio of the engine was set to 16.3. The piston and head of the cylinder 

were manufactured using aluminum alloy while the dry liner in the cylinder is manufactured with cast 
iron as material. Diagram showing the schematic of the experiment is displayed in figure 1. The 

complete specification of the DI diesel engine with single cylinder utilized in this experiment is 

displayed in table 1. Kistler Japan Type 6052 pressure sensor was used to measure in-cylinder pressure 

in this experiment. 

    

 (a) (b) 

Figure 1. Schematic of (a) the experimental system and (b) experimental system construction. 

Signals that originate from coaxial heat flux meter with high-speed response and coaxial thermocouple 

were amplified and documented inside data logger simultaneously to obtain the heat release rate (HRR) 

data. The heat release rate data were obtained along with the signal from in-cylinder pressure sensor in 
every crank angle (CA) position. 

Table 1. Specifications of the engine used in the experiment. 

Parameter Value / Description 

Type of engine Single cylinder engine 
Length of connecting rod [mm] 150.46 

Stroke [mm] 96.9 

Bore [mm] 85 

Capacity of the cylinder [cc] 550 
Ratio of compression [-] 16.3 

Duration of Intake valve opening [deg.] From 347 to 120 (Comp. TDC is 0 deg.) 

Duration of Exhaust valve opening [deg.] From 122 to 330 (Comp. TDC is 0 deg.) 
Offset of the cylinder [mm] 6.5 

Offset of the piston-pin [mm] 0.8 
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Table 2. Experiment condition at 2000 rotation speed with boost pressure of 0 KPa, 20 KPa, 40 KPa, 

and 60 KPa. 

Rotation 

speed [RPM] 

Injection 

step 

Injection 

timing [deg.] 

Injection 

time[ms] 

Injection 

quantity [g/st] 

Total injection 

quantity[g/st] 

2000  

pilot -25 0.16 0.0014 

0.0398 pre -15 0.18 0.0024 
main 3 0.83 0.0360 

pilot -25 0.16 0.0014 

0.0398 pre -15 0.18 0.0024 
main 1 0.83 0.0360 

 

The intake pressures in this experiment were varied from naturally aspirated (0 KPa) to 60 KPa with 

20 KPa increment. The boost pressures originated from utilizing supercharger. Naturally aspirated 
condition was examined to understand further the outcome of supercharging in DI diesel engine. As 

for the main injection timing, the timings were varied into two, advanced injection timing located 1° 
after TDC and retarded injection timing located 3° after TDC. Details regarding injection timing, 

quantity, and time is provided in table 2. The evaluation of engine performance was conducted 

through examining both heat release rate and in-cylinder pressure of the engine. 

3. Results and discussion 

The results of injection timing and intake pressure effect on in-cylinder pressure are shown in figure 2. 

Figure 2 shows main injection step of 3° and 1° after TDC, with 2000 RPM engine speed and various 
intake pressures. This figure indicates the rise of in-cylinder pressure with the rise of intake pressure. 

The results are similar with investigation done by Lee et al. that propose the rise of maximum in-

cylinder pressure under supercharged condition with engine speed below 3000 RPM [27].  

Noticeable difference between main injection of 3° and 1° after TDC, as seen in figure 3, is found in 
the timing of maximum in-cylinder pressure. The maximum in-cylinder pressure during main injection 

step of 3° after TDC is located during TDC while the maximum in-cylinder pressure during main 

injection of 1° after TDC is located few degrees after TDC. This phenomenon occurs due to the slower 
combustion reaction with main injection timing of 3°. The slower combustion reaction reduces the rise 

of in-cylinder pressure value because of the fuel mainly burns after TDC. The lower value of 

maximum in-cylinder pressure in main injection timing of 3° after TDC causes the in-cylinder 

pressure during TDC to be higher than the aftermath in-cylinder pressure rises [28-30]. 
The results of injection timing and intake pressure effect on heat release rate are shown in figure 4. 

Figure 4 shows the main injection step of 1° and 3° after TDC with 2000 RPM engine speed and 

various intake pressures. This figure indicates the rise of heat release rate is proportional to the rise of 
intake pressure. The results are similar with investigation done by Lee et al. that propose the rise of 

maximum in-cylinder pressure under supercharged condition with engine speed below 3000 rpm [27]. 

Noticeable difference between main injection of 1° and 3° after TDC is found in the rise of heat 
release rate before TDC. Heat release rate raises before TDC in all level of intake pressures. In main 

injection timing of 3° after TDC, the differences of heat release rate value between various intake 

pressures are miniscule. Contrary to this, with main injection timing of 1° after TDC, the heat release 

rate value and timing differences are more apparent. Both injection timings have similar pattern with 

higher intake pressure having lower heat release rate before TDC. 
In figure 5, the effect of injection step advancement from 3° and 1° to the heat release rate is displayed 

with respond to certain level of intake pressure. The maximum heat release rate between 3° and 1° are 

quite similar with small degree of differences. It is also found that the maximum heat release rate 

between 3° and 1° occurred in different time. Maximum heat release rate occurs earlier in 1° injection 
timing. Another point of interest is seen in the trend of heat release rate of both 3° and 1° injection 
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timing. It is observed that the heat release rate of 3° overcomes the heat release rate of 1° after certain 
degree from TDC. These phenomena are caused by the slower combustion rate of 3° which delays the 

enormous increase of heat release rate to higher crank angle timing. 

 (a) (b) 

Figure 2. The in-cylinder pressure of DI diesel engine with injection timing of (a) 1° and (b) 3° after 

TDC under 2000 RPM and various intake pressures. 

 

 

 (a) (b) 

 

 (c) (d) 

Figure 3. The in-cylinder pressure comparison of DI diesel engine with injection timing of 1° and 3° 

after TDC under 2000 RPM and various intake pressures (a) 0 KPa (b) 20 KPa (c) 40 KPa (d) 60 KPa. 
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 (a) (b) 

Figure 4. The heat release rate of DI diesel engine with injection timing of (a) 1° and (b) 3° after TDC 

under 2000 RPM and various intake pressures. 

 

 

(a) (b) 

 

(c) (d) 

Figure 5. The heat release rate of DI diesel engine with injection timing of 1° and 3° after TDC under 

2000 RPM and various intake pressures (a) 0 KPa (b) 20 KPa (c) 40 KPa (d) 60 KPa. 
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4. Conclusion 
From these investigations, it can be concluded that the injection timing and intake pressure highly 

affect the in-cylinder pressure and heat release rate performance characteristics in DI diesel engine. 

The rise of intake pressure from naturally aspirated to 60 KPa boosts the in-cylinder pressure and heat 

release rate of DI diesel engine. The main injection timing advancement from 3° to 1° after TDC 

causes increase to the rise of in-cylinder pressure after TDC in DI diesel engine. In retarded injection 

timing, the rise of in-cylinder pressure during TDC is higher compared to the rise of in-cylinder 

pressure after TDC. In the advanced injection timing, the rise of in-cylinder pressure during TDC is 
lower compared to the rise of in-cylinder pressure after TDC. For heat release rate, the occurrence of 

maximum heat release rate appears earlier in advanced injection timing compared to retarded injection 

timing. Both phenomena are due to the slower combustion in the retarded injection timing condition. 
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