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Abstract. The striped snakehead Channa striata is a predatory fish whose life cycle still holds 

many mysteries. One of the obstacles to cultivating this fish is the difficulty of obtaining male 

broodstock. This study aimed to examine the sexual development of C. striata. Such 

information will be of benefit not only for the cultivation of C. striata, but also for sustainable 

management and exploitation of wild populations. Samples were collected from June to 

September 2017 in the inland waters (rivers and canals) of Barru and Bantaeng Districts, South 

Sulawesi, Indonesia. Gonads were observed both macroscopically and microscopically 

including gonad morphology, acetocarmine solution staining, and histology. We found that 

female C. striata were larger and more numerous compared to males in the same population (2 

female:1 male). We identified five different oogenesis phases in C. striata: immature, 

maturing, mature, spawning (partial spawning), and post-spawning (spent). Some individuals 

of standard length 81-229 mm had an intersex (ovotestis) type gonad. In fish of standard length 

110-241 mm, two types of gonads were found: a pair of ovaries suspected to be undergoing 

apoptosis, and a pair of developing testes. Two pairs of gonads were also found in an adult of 

length 381 mm, but both pairs were ovaries, of which one was in mature stage (ripe), the other 

undergoing apoptosis. This study suggests that Channa striata is at least potentially 

hermaphroditic, and its gonads can undergo a differentiation phase. We recommend further 

study on the genetic mechanisms and/or environmental influences which determine gonad 
development and sex differentiation in C. striata. 

1.  Introduction 

Studies on fish reproduction require knowledge of gonad (oocyte and sperm) development. An 

improved knowledge and understanding of gonad development can lead to a deeper understanding of 

sex determination and differentiation, which in turn can serve as a basis for the application of 

biotechnological tools to increase aquaculture production. A review by Nelson et al. [1]   found that, 

although over  32,500 species of fish have been described, very few sex-linked genes have been 

identified, most of which are associated with the male sex (e.g. genes dmy, gsdfy, sdY, etc.). In many 

fish sex is knows to be modulated by environmental factors affecting gonadogenesis, at critical points 

during early development (embryonic or juvenile phases) [2,3,4]. 

Unlike most vertebrates, in fish gonad development and sex differentiation are flexible processes, 

especially during early gonadal development, a labile or critical phase when fish tend to be extremely 

sensitive to environmental factors [2,5]. Fish sex can be changed during the early stages of 

development by factor such as changes in water temperature and pH [6,7], as well as the presence of 

endocrine disrupting chemicals (EDCs) in the water [8,9,10]. In many fishes, research has found that 

labile/critical phases can occur during early embryonic development, or during the juvenile phase 
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before any differentiated cells (germ cells and additional cells) have been produced.  

The striped snakehead Channa striata is a prized freshwater food fish, however processing 

technology is increasingly oriented towards medicinal uses. Striped snakehead culture is currently 

being developed in Indonesia to increase production, one reason being the decline in wild population 

abundance and distribution, due mainly to overfishing and habitat loss [11,12].  Overfishing of many 

wild striped snakehead populations was prompted by the discovery that this fish can accelerate would 

healing in humans due to its high albumin content. Striped snakehead habitat is increasingly being lost 

or degraded due to wetland conversion and other anthropogenic activities [11,12]. 

Challenges in striped snakehead culture include the paucity of data on reproductive characteristics, 

including gonad development, sex determination, and sex differentiation. Furthermore, there are no 

know morphological characters which can be used to reliably differentiate between male and female 

individuals during the maturing phase, and the sex ratio tends to be skewed towards females [12].  

This background prompted the planning of a research programme with twin goals of increasing 

production and supporting conservation of the striped snakehead. This study focused specifically on 

striped snakehead gonad development and sex determination based on gonad morphology and 

histology, with an analysis of sex differentiation based on histological data. The results will provide a 

basis for the development and application of various technological means for increasing production 

and promoting conservation of the striped snakehead, as well as for predicting whether climate change 

is likely to affect the sex ratio of wild populations. 

2.  Materials and methods 

2.1.  Striped snakehead sample collection  

Live Channa striata were collected from wetlands (creeks, swamps, canals, irrigation channels) in 

Barru and Bantaeng Districts South Sulawesi Province, Indonesia (Fig. 1) during June to September 

2017 and brought to the Fish Biology Laboratory at Hasanuddin University, Makassar for study.  

 

 

Figure 1. Map of striped snakehead sampling sites in Barru District (Bojo River) and 

Bantaeng District (irrigation canals) in South Sulawesi Province, Indonesia 
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Fish were caught using a traditional method, and random sampling produced a sample (N = 81) 

comprising 42 and 39 fish from Barru and Bantaeng district, respectively. The wet weight (w/w) and 

length (total length, TL and standard length, SL) of each fish were measured using standard 

procedures.  

2.2.  Sex determination 

The sex of each striped snakehead was determined macroscopically (through dissection) and at the 

microscopic scale using an acetocarmine solution prepared according to [14] Guerrero & Shelton 

(1974) followed by histological examination [15]. The abdominal cavity was opened via a cut from the 

top of the pectoral fin to just behind the anus. Gonad maturity stage was determined macroscopically 

following a maturity key designed for fishery purposes. Gonad morphology was analysed 

descriptively following [16,17], with some modification. The gonads were then removed and a sample 

of around 0.5 cm was placed on a glass slide, 2-3 drops of acetocarmine were added; the sample was 

then finely chopped and observed under a binocular microscope at 4 x magnification.  

2.3.  Gonad histology  

Following dissection, gonad morphology was observed using standard histological slide preparation 

methods. In small specimens the entire gonad was used, while for larger specimens segments were 

taken from the anterior, central and posterior region of both right and left gonads. The samples were 

fixed in 10% formalin solution for 24 hours. Each sample was sliced vertically to a thickness of 5 µm 

and stained with haematoxylin and eosin (H&E). Slide histology was observed and analysed using a 

MT-31 Binocular Entry-Level Advanced Compound Microscope and Euromex software, Microscope 

BS.1152-PLi, binocular. The maturity stage of ovaries was determined microscopically based on [18] 

(OECD, 2010) and a modified version of the gonad maturity scale in [19]. Based on morphological 

criteria, the method used [18] attributes a maturity value to ovaries and testes, that increases with 

gonad maturity (stage 0–5 for females; stage 0–4 for males). Completely undifferentiated or intersex 

individuals were not included in the maturity assessment.  

3.  Results and discussion 

The striped snakehead is a predator whose life-cycle still retains many mysteries. Striped snakehead 

males and females are hard to distinguish without dissection, even in the mature phase. A secondary 

sexual character observed in both male and female individuals is a change in pigmentation, with black 

spots appearing on the ventral area and a reddish colouration of the urogenital area when an individual 

is in the mature phase.  

The observed size at first maturity for C. striata from the Bojo River (Barru District was 115.60 

mm TL/93.00 mm SL. In the Bantaeng wetlands, the size at first maturity was 230.00 mm TL/190.90 

mm SL. The average size of adult C. striata was 292.10 ± 40.26 mm for females and 285.10 ± 85.71 

mm for males. 

Striped snakehead gonads observed were roughly tubular, situated below the intestines from the 

anterior abdominal cavity to the urogenital area. Gonad colour varied from off-white to brownish red 

and reddish white during immature and maturing phases, to yellowish-orange in the mature phase, 

Ovaries were longer than testes in fish of similar age/size. Early gonad development was seen in 

female striped snakehead of 113.6 ± 19.6 mm, while in males testes began to be detected at a length of 

210.0 ± 42.4 mm.  

Based on morphological, acetocarmine staining and histological traits, five ovarian developmental 

stages (Table 1) were determined for female striped snakeheads: immature (Figure 2), maturing 

(Figure 3), mature (Figure 4), spawning (Figure 5), and post spawning (spent) (Figure 6). This 

classification differs from the Channa striata ovarian maturity scale described by Al Mahmud et al. 

[20] which has four developmental stages: stage I (immature), stage II (maturing), stage III (mature), 

and stage IV (spent/recovering).  
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Table 1.  Description of ovarian development in female striped snakeheads 

Stage Macroscopic appearance          Acetocarmine staining and Histology 

I. Pre-spawning 

Immature  

Fig. 2 

Small ovary, thin ribbon-like; transparent, 

yellowish white to reddish white in colour, 

oocytes not yet visible 

Ova contains granules like sand; 

granule/oocyte diameter 0.022 to 0.528 

mm 

 

Maturing  

Fig. 3 

Ovary straight, oocytes resemble white 

spots,  reddish white in colour 

Cytoplasm dominated by primary oocytes 

and cortical alveolar oocytes, oocyte 

diameter 0.033 to 0.550 mm 

 

Mature  

Fig. 4 

Ovary increases in size, oocytes clearly 

visible and yellowish-orange in colour 

 

Dominated by late vitellogenic phase, yolk 

granules almost fill the ooplasm. The 

nucleus has not yet begun to migrate to the 

periphery, oocyte diameter 0.253 to 1.111 

mm  

 

II. Spawning 

Fig. 5 

Oocytes yellowish in colour, ovary fully 

swelled and fills the abdominal cavity 

 

Vitellogenesis has reached its peak; cells 

larger and more hydrated; nucleus has 

migrated toward the periphery of the cell 

and is in the process of dissolution. Ova 

dominated by oocytes in mature egg stage, 

oocyte diameter 0.033 to 1.484 mm 

 

III. Post-

spawning (spent) 

Fig. 6 

Oocyte yellowish in colour, a few oocytes 

visible in ova that resemble membranes 

Characterized by some oocytes undergoing 

atresia 

 

  

 

 

 

Figure 2.  

Immature stage, 

early differentiating 

C. striata gonad 

(80.0-136.0 mm TL, 

65.0-112.0 mm SL)  

A: morphology  

B: acetocarmine 

staining  

C: histology: oocytes 

in meiosis (Om).  
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Figure 3. Maturing. 

Differentiating 

gonad of C. striata 

(230.0-287.0 mm 

TL, 190.9-233.0 SL)  

D,E. morphology  

F. acetocarmine 

staining  

G. histology: 

oogenia (Og), 

primary growth (Pg), 

cortical alveoli 

formation (Ca), 

vitellogenesis (Vt) 

 

 

 

  

Figure 4. Mature 

differentiated C. striata 

gonad (240.0-336.0 mm 

TL, 200.0-280.0 SL).  

H and I. morphology 

J. histology: primary 

growth oocytes (Pg), 

yolk granules (Yg), 

zona pellucida (Zp), 

lipid droplets (Ld), 

early vitellogenic 

oocyte (EV) beginning 

to accumulate yolk 

granules peripherally, 

oocyte maturation (Om)  

 

 

  

Figure 5. Spawning (311.45-465.0 mm TL, 258.73-395.0 mm SL). K: morphology,  

L. histology: yolk globule (Yg), mature egg (Ma).  
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Figure 6. Post-spawning (spent) stage in C. striata 

(specimen 383.0 mm TL, 330.0 mm SL) with many 

atretic oocytes (At) 

 

Microscopic examination and the oocytes size distribution of ripe ovaries indicated that C. striata 

exhibits an asynchronous ovarian growth pattern, with all oocyte types present during the spawning 

season, reflecting a long spawning period (Fig. 7).  In asynchronous oocyte development, egg release 

is concomitant with oocyte recruitment, and therefore ovarian weight only changes slightly during the 

spawning season [24]. Similar asynchronous ovarian growth and fractional spawning patterns are 

reported in many Sparidae species, e.g. Dentex dentex [25] and Pagrus pagrus) [26]. 

 

  

Figure 7. Mature oocytes 

reveal asynchronous ovarian 

development in C. striata  

(specimen 199.50 mm SL) 
Og: oogonia; CNO: chromatin 

nucleolar oocytes;  

PO: perinucleolar oocytes;  

CaO: Cortical alveolar oocytes; 

EVO: early vitellogenic 

oocytes; LVO: late vitellogenic 

oocytes; MO: mature oocytes  
 

One of the challenges encountered during attempts to breed striped snakeheads is a difficulty in 

obtaining male broodstock. In this study the sex ratio (male;female) was around 1:2 in both the Bojo 

River, Barru District, and in Bantaeng District wetlands. A strong female bias (1:3) is also reported for 

the Bantimurung River C. striata population [21], while an even more extreme female bias (1;10.5) is 

reported from the Batangase area in Maros District, also in South Sulawesi Province, Indonesia [13].  

The phenomenon of sex reversal appeared to be underway in the gonads of a number of male 

specimens of 110.00-241.00 mm SL (Fig. 8). Furthermore, the histological examination of several C. 

striata in the length rages 81.00-229.00 mm TL exhibited ovotestis (intersex) gonadal structures (Fig. 

9).  Macroscopic signs of ovotestis gonads include a milk white gonad colouration, overall slim and 

elongated thread-like shape with egg-filled protrusions standing proud of the gonad surface close to 

the anus (posterior end of the gonad). Microscopic examination of ovotestis samples showed a thick 

ovarian wall and thick lamellae, as well as testis tissue with spermatids present.  

Hamlett [22] opined that the plasticity of sex determination is a hallmark of the bony fishes, 

including gonochoristic, protandrous and protogynous hermaphroditism, synchronised, sequential, and 

serial hermaphroditism. Sex reversal may occur once or several times during ontogeny; furthermore, 

sex reversal, sex determination and gonad development are often not fixed characters, and can be very 

sensitive to extrinsic/environmental factors such as temperature, pH, and contaminants [2,5,23]. This 

flexibility is atypical of vertebrates a whole, and means that temperature and pH during early gonad 

development can be applied to induce sex change in some fish species [6,7]. The observed instances of 
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ovotestis and of the presence of eggs and spermatozoa in the same gonad lead the authors to suspect 

that the striped snakehead may be potentially hermaphroditic, either as a sequential or as a serial 

hermaphrodite. As far as we know, this is the first report of hermaphroditism in this species. 

.  

   

Figure 8. Ovotestis 

phenomenon (ovaries/ 

eggs and testes/sperm in 

the same individual) in a 

striped snakehead of 

225.0 mm TL, 184.0 mm 

SL.  

Spt: spermatid    

 

 

 

Figure 9. Hermaphroditism 

in C. striata. Immature  

ovary with the ovarian 

lamellae (Ol) containing 

spermatids.  

WE: epididymis wall;  

DE: ductus epididymis;  

MC: smooth muscular 

cells; B: blood vessel;  

At: atretic follicles 
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