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Abstract. We turn to study the numerical solution of a shallow water of Rosenau-
Burgers equation. We propose a scheme to numerically solve this equation. A detailed 
analysis is carried out for the scheme, and analysis shows that the scheme is 
unconditionally stable; At last, we use the proposed methods to investigate the 
asymptotical behavior of the solutions to the shallow water wave equation. 

1.  Introduction (Heading 1) 
Rosenau proposed the Rosenau equation in [1, 2], the existence and uniqueness of this equation was 
proved by Park [3]. Chung[4] propose a finite difference approximate solutions for the Rosenau 
equation,  S.A. Manickam, A.K. Pani, S.K. Chung, [5] use a second order spilitting combined with 
orthogonal cubic spline collocation method for  the  Rosenau  equation.  Y.D. Kim, and H.Y. Lee [6], 
consider the finite element Galerkin method for the Rosenau equation. On the other hand, for the 
further consideration of the dissipation in space for the dynamic system, such as the phenomenon of 

bore propagation and the water waves. The viscous term 2
xu  needs to be included. with 0  . 

This equation is usually called the Rosenau-Burgers equation. Some other works have been focused on 
using numerical technique to solve Rosenau-Burgers type equations [7-8]. 

In this paper, we propose finite difference/spectral schemes for the Rosenau-Burgers equation. The 
proposed schemes combine a linearized finite difference method in time and Fourier spectral method 
in space. A detailed analysis is carried out for the scheme, and analysis shows that the scheme is 
unconditionally stable. We use the proposed methods to investigate the asymptotical behavior of the 
solutions to the shallow water wave equation.  

2.  Preliminaries 
We consider the following Roseau- Burgers equation: 
 

4 2 0, ,t t x x x xu u u u u u x                                          (2.1) 

 
Satisfied the following initial conditions: 
 

0( ,0) ( ), ,u x u x x                                                      (2.2) 
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And the boundary conditions 
 

( , ) ( , ), (0, ], ,u x t u x L t t T x                                          (2.3) 
 

With 0  . 
Lemma 1. The solution of equation (2.1) - (2.3) satisfies the following energy inequality: 
 

0( ) ( ),E u E u  

 
Where 
 

2 2 2
0 0( ) || || || || .xE u u u    

 
Proof: Equation (2.1) on both sides and the inner product can be: 
 

2 2 2 2
0 0 0

1
(|| || || || ) || || 0.

2 x x

d
u u u

dt
       

 
Thus 
 

( ) 0.
d

E u
dt

  

 
This proved the theorem. 

3.   TIme discretization scheme 
In this section, we introduce two linearized time semi discrete schemes for Roseau- Burgers equation 
and investigate their stability. For a given positive integer 0, ,K t n t   . 0,1, , , /n K t T K    

3.1.  First order semi implicit scheme consider the first order semi implicit scheme based on the Euler 
method： 
 

1
4 1 4 2 1 1

1 1

1
( )

1
(2 ) 0, 0.

3

n n
n n n n

x x x x

n n n n
x x

u u
u u u u

t t

u u u u n




  

 


       

 

     
                                    (3.1) 

 
The semidiscretized problem (2.9) is unconditionally stable in the sense that for all， 0t  ，it 

hold that： 
 

         1( ) ( ), 0.n nE u E u n                                                       (3.2) 
 

Proof:  taking inner in () with 12 ntu  ，noticed that. 
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1 1 1

1 1 1

(2 , )

( ( ), ) 0.

n n n n n
x x

n n n n n
x x

u u u u u

u u u u u

  

  

   

   
 

 
then： 
 

1 2 2 1 2 2 1 2 2 2
0 0 0 0 0

2 1 2 2 1 2
0 0

|| || || || || || || || || ||

|| || || || 0.

n n n n n n
x x

n n n
x x x

u u u u u u

u u u

  

 

      

     
 

 
Thus we have： 
 

1 2 2 1 2 2 2 2
0 0 0 0|| || || || || || || || , 0.n n n n

x xu u u u n        

 
This proved the theorem. 

4.  Numerical results 

4.1.  Verification of convergence order 
In this section, the numerical simulations are reported to confirm the theoretical Results. We start with 
some implementation details. By applying the Fourier transformation to (3.3), we obtain a linear 

system for the Fourier modes 
1

/2 1
/2{ }

n
N

k k Nu
 

 .  

Euler/ Fourier scheme： 
 

  1 1
4 2

1 1

1
( )(1 (2 / ) ) ( 2 / (2 / ) )

1
{2 } 0.

3

n n n

k k k

n n n n
N x N N x N k

u u k L i k L k L u
t

u u u u

   
 

 

   


    
 

 
We present numerical approximations obtained by the proposed finite difference/spectral method to 

support our theoretical arguments. The main purpose is to check the convergence order of the 
numerical solution with respect to time step. The convergence rate in time is measured through 
computing the quantity: 

 
,2 2 ,

0
2 2 , 4 , /2

0

|| ||
log

|| ||

n t n t
N N

n t n t
N N

u u
Rate

u u

 

 

 
  

 
 

 

Where ,2n t
Nu  means the solution obtained with the time step size t and polynomial degree N . 

All the results presented in this convergence rate test correspond to the numerical solution captured 
at ( ,0) sin(2 )u x x , 1T L   and 50N  . In Table 1 we list the computed rates (4.2) for the 

scheme (3.3) for several time step sizes. From this table, it is observed that for 0   and 1  , the 
convergence order is approximately 1.  
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Table 1. Convergence rate in time 

\ t   0.1t  0.05t  0.01t  0.005t   
0 0.9995 0.9998 1.0005 1.0009 
1 0.9839 0.9919 0.9966 1.0019 

4.2.  Asymptotic behavior of solutoin 
This subsection is devoted to numerically investigate the asymptotic behavior of the solutions. The 
numerical results are realized by using: 
 

( ,0) sin(2 )u x x , 20L  , 0.01t  , 50N  . 
 

Figure.1-4 show convergence of the solution ( , )u x t to its initial value. From Figure 5-8 we can see 

that L have a significant impact on solution. If we fix 10, 10,L T  0.01,t  50N  , we can see 

from Figure 9-12, with the increase of   , the solution asymptotic convergence to zero more faster. 
 

 

Figure 1. Solution for 10.T   
 

 

Figure 2. Solution for 40.T   
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Figure 3. Solution for 80.T   
 

 

Figure 4. Solution for 100.T   
 

 

Figure 5. Solution for 10.L   
 

 

Figure 6. Solution for 40.L   
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Figure 7. Solution for 80.L   
 

 

Figure 8. Solution for 100.L   
 

 

Figure 9. Solution for 1.   
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Figure 10. Solution for 4.   
 

 

Figure 11. Solution for  20.   
 

 

Figure 12. Solution For  40.   
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