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Abstract. Aircraft detection in remote sensing images is always the research hotspot 
but a challenging task for the variations of aircraft type, pose, size and complex 
background. In the paper, we propose a region-based convolutional neural network to 
detect aircrafts. To enhance the learning ability of the network, a mult-resolution 
aircraft remote sensing dataset is collected from Google Earth. Then, the detection 
model is trained end to end by fine-tuning on the obtained dataset and realizes 
automatic aircraft recognition and positioning. Experiments show that the proposed 
method outperforms state-of-the-art method on the same dataset and the requirement 
for real-time can be satisfied simultaneously. 

1.  Introduction 
Automatic aircraft detection in remote sensing images has been one of the research focuses due to its 
high application value in airport dynamic monitoring and military surveillance. With the development 
of computer vision and image processing technology, different detection methods have been proposed 
in recent years. 

Traditional aircraft detection methods usually consist of three separated stages: region proposal, 
feature extraction and target classification. The first stage chooses some candidate regions on the 
given images for further recognition. Sliding window [1] is usually used for object locating. Because 
millions of windows per image are sent into network to compute gradient, it is rather time-consuming. 
To solve the problem, some approaches, such as selective search [2], binarized normed gradients 
(BING) [3], Edge boxes [4] and objectness [5], have been proposed. However, the time consumption 
of region proposals is still considerable and the process is hardly realizable through GPU. The 
extracted features from intermediate stage are used to classify and recognize the areas through 
retrained classifier at last. Conventional methods always apply advanced general features, such as 
histogram of oriented gradient (HOG) [6] and scale-invariant feature transform (SIFT) [7], to specific 
target application, but general features have difficulty in distinguishing different types and holding the 
invariance of target. Researchers also design templates with rotation and scale invariant or 
corresponding manual features based on the characteristics of the aircraft to detect specific aircraft 
target [8-9]. Nevertheless, experiments show that those methods cannot keep high accuracy faced with 
new complex scene. 
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In the paper, we propose a novel detection model based on deep convolutional neural network to 
detect aircrafts and realize a better performance than the state-of-art method. The method achieves 
94.55% detection accuracy that way above the existing methods and the detection rate is about 3fps.    

2.  Realation Work 
The CNN [10], first proposed by Yann et al, is a supervised deep learning network and the 
convolutional layers in the network can learn rich features from the raw data. With the appearance of 
innovative network models, the CNN has yielded many state-of-the-art performances in the field of 
image processing. CNN has been used to the aircraft detection in remote sensing images. A FCN model 
was proposed by Xu et al. [11] for aircraft detection. Wu et al. [12] integrated BING and CNN to 
recognize aircrafts. Chen et al. [13] introduced multiple thresholds for localization and used CNN for 
classification.  

Object detection based on CNN has achieved major breakthrough in the application of natural 
images from 2014 and the detection networks can be divided into two types: region-based detection 
networks and end-to-end detection networks. Faster R-CNN [14], a variant of R-CNN [15] and Fast R-
CNN [16], is a typical region-based convolutional neural network. It makes real-time detection to 
become possibility trough GPU where proposal computation is nearly cost-free. The detection method 
achieves state-of-the-art object detection accuracy, 73.2% and 70.4% mean Average Precision (mAP) 
on nature images dataset PASCAL VOC 2007 and PASCAL VOC 2012. SSD [17] and YOLO [18] 
are the representative models of end-to-end detection methods and have advantage in detection speed 
and achieve a competitive accuracy with Faster R-CNN. However, they  

 

 

Figure. 1 The architecture of Faster R-CNN 
 

Are not suitable to detect small targets for the strategy of target localization and the demand of 
fixed-size images as input. Inspired by Faster-RCNN, we detect aircrafts by modifying the parameters 
of the model according to the characteristics of our dataset. 

The rest of the paper is organized as follows. In section 3, the network model is introduced. 
Simulation experiment and conclusion respectively arranged in section 4 and section 5. 

3.  Network Model 

3.1.  Model Struction 
Faster R-CNN is a region-based object detection network and consists of a Region Proposal Network 
(RPN) and a state-of-the-art object detection network Fast R-CNN. The architecture of Faster R-CNN is 
shown in Fig.1. (RPN) shares fully convolutional layers with the object detection network. Among 
them, the RPN takes an image of arbitrary size as input and output a set of object proposals, each with 4 
coordinates ( , ,x y w and h ) of the predicted bounding box and 2 scores to estimate the probability of 
object/not-object. The cross-boundary anchors are ignored to increase the detection accuracy and the 
threshold for non-maximum suppression (NMS) is fixed at 0.7 to reduce redundancy caused by the 
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overlapped RPN proposals. Object detection network perform elaborate classification and localization 
task by calculating softmax probabilities and bounding-box regression offsets for each proposal. 

The mechanism of region proposal method is that sliding a 3*3 spatial window on the feature map 
produced by the last shared convolutional layer. At each sliding-window location, it outputs 9 anchor 
boxes, 3 scales and 3 aspect ratios, corresponding to 9 region proposals in the raw image. Each 
sliding window is mapped to a lower-dimensional vector  

 
Table. 1 Anchor Boxes Sizes at Each Sliding-window Location 

Anchor 264 ,2 :1 264 ,1:1 264 ,1: 2 2128 ,2 :1

Proposal 93 55 57 60 43 83 188 111

Anchor 2128 ,1:1 2128 ,1: 2 2256 ,2 :1 2256 ,1:1

Proposal 113 114 70 90 416 229 261 284

Anchor 2256 ,1: 2 2512 ,2 :1 2512 ,1:1 2512 ,1: 2

Proposal 174 332 768 437 499 501 355 715
 
That will be sent into parallel fully connected layers, box-regression layer and box-classification 

layer. Considering that the aircraft targets in remote sensing image are smaller than the objects in 
natural images, we extend the anchor boxes to 12 with a smaller box area of 264 pixels at the same 
aspect ratios in the paper.  The experimental results also prove the effectiveness. The concrete sizes 
are shown in Table 1. 

3.2.   Training Strategy 
To training the unified detection network, we assign a binary label to each anchor in RPN. We set a 
positive label to an anchor when the rules are met: 1) the anchor has the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or 2) the anchor has an IoU overlap that higher than 0.75 
with any ground-truth box. Meanwhile, we set a negative label for the anchors that IoU is lower than 
0.3 with all the ground-truth boxes. Anchors that are neither positive nor negative do not serve as 
training samples. The sampling strategy used in RPN follows [16]. A mini-batch comes from one image 
that contains many positive and negative anchors. To avoid the bias towards negative samples, we 
randomly sample 256 anchor boxes in an image and the ratio of positive and negative anchors is 1:1.  

For each anchor box, we adopt a multi-task loss function for classification and bounding-box 
regression as used in [14]: 
 

*(p , t ) L (p ,p ) p (t , t )i i cls i i i reg i iL L                                            (1) 

 
Where the classification loss clsL is log loss and the regression loss regL is smooth 1L loss function 

defined in [16]. Parameter ip is the predicted probability that anchor i is an aircraft. *
ip  Is labeled 1 

when the anchor is positive and 0 if the anchor is negative. The term *
i regp L indicates that the regression 

loss is activated only by positive anchors. For locating, each anchor box has 4 coordinates and the 
parameterizations of coordinates are defined following [15]: 
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, ,x y w And h denote the center coordinates of the anchor box, its width and height. , rx x  And *x are 
for the predicted box, anchor box and ground-truth box (same to ,y w and h ). The hyperparameter   is 
set to 10 to control the balance between the two task losses. With those definitions, the detection 
network is possible to predict aircraft targets at a wide range of scales and aspect ratios by minimizing 
the objective function. 
 

 

Figure. 2 The examples of the image dataset. 

4.  Simulation Experiment 

4.1.  Dateset  
The remote sensing aircraft dataset used in [11] has 76 images in total, too small to train Faster R-CNN. 
In the paper, we collect 1000 images with different resolution 
from Google Earth. Fig. 2 shows some examples of the  dataset and the percentage of high-resolution 
images is about 90%. The image sizes vary from 600*700 to 740*1380  pixels. Research shows that data 
augmentation can make the network fully study the change of the object and enhance the recognition 
ability for the complex change in translation and angle. We expand the available dataset with horizontal 
flip and rotation (90 ,180 ,270 )o o o to the seed images. With the approach, the dataset is expanded by 8* 
from 1000 to 8000 images. We select randomly 3000 images for training, 3000 images for validation 
and 2000 images to test. The network we propose is a supervised object detection network and the other 
two kinds of documents we need to use the detection network. XML format file is used to indicate the 
ground-truth locations of aircrafts within the images. We adopt the image annotation tool LabelImg to 
complete the job manually and only one category in the dataset. Apart from annotation files, the code 
framework requires 4 TXT files named train.txt, test.txt, val.txt and trainval.txt to indicate the use of 
those images.  
 

Table. 2 Network Parameter Conviguration 

Parameter Base_lr Lr_policy gamma
Value 0.001 Step 0.1 

Parameter Weight_decay Momentum Iter_size
Value 0.0005 0.9 2 

4.2.  Network Training  
CNN requires a lot of samples to initialize the training of the networks and the number of our dataset is 
still small compared with millions of datasets. Transfer learning [19] has been successfully applied to 
small sample training. The training strategy can speed up the convergence rate and  
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Figure. 3 The performance with different proposals number 
 

Avoid local optimum. We use pre-trained VGG-16 [20] model and the approximate joint training 
which can be trained end-to-end to fine-tune the detection network. The main parameters of the 
network are shown in table 2. All experiments are done within Caffe and our graphics is NVIDIA 
GeForce GTX 1070 with an 8GB GDDR5 memory.  
 

4.3.  Rusults and Analysis  
Considering that the number of proposals fed into Fast R-CNN has influence on the detection accuracy 
at test time [14, 21], we analyze the effect of this parameter on the detection performance at first. As 
showed in Fig. 3, the maximum is achieved when the number of proposals is fixed at 500. 
To evaluate the detection method quantitatively, we test the proposed model and the compared methods 
on the sane test dataset we collected. The compared methods include the original Faster R-CNN and 
FCN which achieves the best results in [11]. The detection rate and the average test time are shown in 
Table 3.  

FCN is an end-to-end detection network which can be approximately considered as the RPN part of 
the Faster-RCNN. We can clearly see that Faster R-CNN and the proposed method have better 
performance than FCN. The results show that the high-quality region proposals produced by RPN can 
greatly improve the detection capacity of the network. The proposed method has 1.8 percentages 
higher than the original Faster R-CNN indicating that the smaller box areas are suitable to the 
detection of the small targets in large range. The running time is about 3fps on GTX 1070 slower than 
FCN because of the network structure and is enough fast to meet requirements for real-time.  

Fig. 4 shows the detection results of the proposed method on partial test images from which it can 
be seen that the proposed method can accurately detect multi-scale and multi-direction aircraft targets 
in complex background.  

 
Table. 3 The Detecion Rate and Avarage detection Time of Three Methods 

Model Detection Rate Average Detection time 
FCN 87.41% 4fps 

Faster R-CNN 92.76% 3fps 
The proposed method 94.55% 3fps 
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Figure. 4 Aircraft detection results of the proposed method with a score threshold as 0.8 

5.  Conclusion 
In the paper, we propose a region-based convolutional neural network using smaller anchor boxes area 
in Faster R-CNN to detect aircrafts in remote sensing images. Experiments show that our method can 
yield an efficient detection and performs better than the state-of-art method. Aircrafts that are various 
types and different colors are treated as the same kind of target in the paper. In real application, it 
always needs to distinguish the type and detect moving target. In view of the results we have achieved, 
we will be devoted to improving the detection precision and applying it to other target detection tasks in 
our future works. 
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