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Abstract. According to the problems of heavy workload, low efficiency, easy fatigue 

misjudgement with artificial recognition and imbalance of dangerous goods image 

dataset in airport security inspection caused the low recognition accuracy, a 

convolution neural network automatic recognition model based on oversampling for 

dangerous goods is proposed. Firstly, the oversampling technique is used to equalize 

the dataset of dangerous goods image, and then the image is inputted into the 

convolution neural network model composed of four convolution layers and one full-

connection layer for training. The stochastic deactivation optimization technique is 

introduced in the training to get better recognition effect. The experimental results on 

a dangerous goods image dataset of public security in 2017 show that the recognition 

accuracy of the model can reach 90.7% after equalization, which is 33.4% higher than 

that before equalization. In addition, the recognition accuracy of the model is 5.8%, 

7.2% and 5.4% higher than that of GoogleLeNet, AlexNet and ResNet respectively. 

The model has high recognition accuracy and good real-time performance, which is of 

positive significance to improve the level of airport security intelligence. 

1.  Introduction 

Airport security inspection is an important link to ensure the safe flight of civil aviation, and is related 

to social stability. At present, the international situation is complex and severe. At the same time, the 

airport passenger flow is explosive growth, and dangerous goods are more diversified, which have 

brought great challenges to the high quality and efficiency of security inspection. At present, China's 

airport safety inspection of dangerous goods recognition also depends on the X optical machine 

operator to manually identify. Because of the different angle of luggage and the density and volume of 

objects, the X-ray machine image characteristics of dangerous goods are very different. Even the same 

dangerous goods, the images presented in the X-ray machine are not the same. This brings great 

difficulties to the machine operator to accurately identify dangerous goods, and is very easy to judge 

errors, which causes a hidden danger to the safety of civil aviation. In addition, the machine operator 

to identify dangerous goods image belongs to a typical repetitive task, a long time of high-intensity, 
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intense work, the brain and body of machine operator are easy to fatigue, which has a great impact on 

the accuracy and efficiency of dangerous goods recognition.  

Convolutional neural network (CNN) [1] can automatically learn image features, which are widely 

used in face recognition [2, 3], vehicle detection [4, 5], traffic sign recognition [6] and object detection 

[7, 8] image recognition fields. Due to the excellent performance of CNN models such as GoogleNet 

AlexNet 10] and ResNet [11] in the image recognition contest, many researchers have applied these 

models directly or improved to image recognition in related fields. 

Although CNN has achieved good results in image recognition in different fields, research and 

application in the field of airport security and dangerous goods have not been found. In addition, 

traditional CNN assumes that the number of images in each category in the dataset is balanced. When 

designing models, usually only attention to the recognition accuracy and real-time of the model is 

considered, and the influence of the imbalance of the dataset on the recognition effect is not 

considered. Based on this, this paper proposes an over-sampling-based convolutional neural network 

automatic recognition model for dangerous goods, and compares it with the recognition effects of 

GoogLeNet, AlexNet and ResNet models to verify the validity of the model. 

2.  Convolution neural network model based on oversampling 

This section will elaborate on the over-sampling-based convolutional neural network automatic 

recognition model for dangerous goods. Firstly, the implementation of oversampling technology is 

described, and it is used to realize the equalization of the dataset of the security dangerous goods. 

Then the CNN model proposed in this paper is introduced from the aspects of convolutional layer, 

pooling layer, fully connected layer, optimization technology and training process. 

2.1.  Dataset equalization 

The traditional machine learning recognition algorithm assumes that the number of samples in the 

dataset is similar, but in reality, the number of various types of samples is not balanced, usually a large 

number of classes are called majority classes, otherwise known as the minority class. As the traditional 

recognition algorithm ignores the imbalance of the number of samples in the dataset, recognition 

algorithms often biased towards the majority class, and the minority classes have a high false 

recognition rate. Generally speaking, the imbalance ratio of different kinds of samples exceeds 4:1, 

and the recognition algorithm cannot meet the recognition requirements because of the imbalance of 

data. The number of samples of the dangerous goods dataset used in this paper is shown in row 1 of 

Table 1.  

As shown in row 1 of Table 1, the imbalance of the number of different categories in the dangerous 

goods data set is obvious. Therefore, it is necessary to deal with the imbalance of the dataset before 

designing the convolutional neural network model. 

This paper uses Synthetic Minority Over-sampling Technique (SMOT) to implement dataset 

equalization. SMOT is a common oversampling technique, which randomly selects several nearest 

neighbor samples for each minority sample, and randomly selects points on the line between the 

samples and these nearest neighbors to generate new minority samples without repetition. SMOT 

makes the classification plane of minority classes extend to the space of majority classes, which can 

effectively avoid the over-fitting problem caused by random replication of samples. After SMOT 

equalization, the number of samples is shown row 2 of Table 1. 

 

Table 1. The number of dangerous good with disequilibrium and equilibrium. 

 Explosives Ammunition Blunt 
Control 

apparatus 

Kindling 

material 
Guns sharps 

Dangerous 

articles 
pyrotechnics 

Disequilibrium 264 299 43 986 744 325 99 188 241 

Equilibrium 845 943 631 986 744 975 692 752 823 
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2.2.  Convolutional Neural Network Model 

After the Dangerous Goods image dataset is equalized by SMOT technology, which is will be inputted 

into convolutional neural network model to identify. The model consists of five hidden layers, the first 

four layers are Conv1, Conv 2, Conv 3 and Conv 4 convolutional layers, each of which is divided into 

convolutional layer (C), active layer (R) and pooled layer (P), After flattening the output result of P4 

in Conv 4, it is connected to the fifth-layer fully-connected layer FC 5, and finally outputs the 

classification probability of the nine types of dangerous goods, and its structure is as shown in Figure 

1. 

 

 

Figure 1. Convolution neural network model. 

 

Convolutional layer: The size of the dangerous goods input to C1 is 100 * 100 * 3. C1 and C2 use a 

5*5 size convolution kernel, and the number of convolution kernels is 32 and 64 respectively; C3 and 

C4 use 3*3 convolution kernels, and the number of convolution kernels is 128; C1, C2, C3, C4 have a 

convolution movement step of 1. 

Activation layer: R1, R2, R3, and R4 all use the ReLU activation function, which turns all negative 

values to zero while the positive values remain unchanged. This unilateral suppression operation 

makes the ReLU activation function have the advantages of sparse activation and fast convergence, 

and its function expression is shown in equation (1). 

 

                             (1) 

 

Pool layer: P1, P2, P3 and P4 all use the maximum pool size with 2*2 size and 1 step size. 

Full connection layer: FC5 takes the results of P4 flattening as input and contains 1024 neurons; 

FC5 is fully connected to the final output layer, which contains 9 neurons. 

In the training process, when the convolution and pooling operations are performed, the image 

feature map size changes as shown in Table 2. 

 

Table 2. Three Scheme comparing. 

Convolution layer Input feature map Output feature map 

Conv1 100*100*3 50*50*32 

Conv2 50*50*32 25*25*64 

Conv3 25*25*64 13*13*128 

Conv4 13*13*128 7*7*128 
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2.3.  Model optimization technique 

2.3.1.  Loss function. The loss function of the model using cross entropy cost function, cross entropy 

cost function can not only overcome the problem that the update weight of variance cost function is 

too slow, but also avoid gradients to dissipate, which is shown in equation (2). 

 

                        (2) 

 

Among them, C is the loss value, n is the total number of training samples, a is the actual output of 

the neurons, and y is the expected output. 

2.3.2.  Optimization function. The optimization function of the model is Adaptive Moment Estimation 

(Adam) function. Adam dynamically adjusts the learning rate of each parameter by using the first-

order moment estimator and the second-order moment estimator of the gradient. It has faster 

convergence speed and more effective learning effect. Moreover, it can correct the problems that exist 

in other optimization techniques, such as the disappearance of learning rate, the slow convergence or 

the large fluctuation of loss function caused by the parameter updating of high variance.  

2.3.3.  Random inactivation. In order to improve the generalization ability and reduce the risk of over-

fitting, dropout random inactivation strategy is adopted at the fully connected layer of the model. 

Dropout is a regularization method to prevent over-fitting of neural network. It randomly discards the 

output value of the hidden layer part of the neural node during the process of neural network training, 

and does not need to update the weights associated with the nodes when the weights are updated by 

the back propagation. The working principle of dropout is shown in Figure 2.  

 

 

Figure 2. Dropout work diagram. 

3.  Experimental verification 

3.1.  Experimental platform and dataset 

This experiment was carried out on a computer with Intel Corei5-3230M CPU, 2.60 GHz main 

frequency, 8G memory and W Windows 10 (64 bit) operating system, used Python 3.5 + TensorFlow 

1.6 to implement the convolution neural network. 

To verify the validity of the proposed model, the dataset used in this experiment is from the 2017 

Public Security No.1 Bureau (National Final Edition) Dangerous Goods Image Library, which 

contains 3225 pairs of 9 types of dangerous goods images. Including explosives, ammunition, blunt, 

control apparatus, kindling material, guns and other weapons, sharps, dangerous articles and 

pyrotechnics. 
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The dataset from the dangerous goods image library of 2017 Public Security No.1 Bureau 

(National Final Edition) is called dataset I (9 categories, 3,225 images), and the dataset II (9 categories, 

7,391 images) will be obtained by balancing the dataset I with SMOT technology. Datasets I and II are 

divided into training sets and verification sets. The images of dangerous goods in dataset I and II is 

shown in Figure 3. 

 

(a)

(b)

(c)

(d)

 

Figure 3. The image of dangerous goods in dataset I and II (part) (portion), (a) guns (b) control 

apparatus, (c) ammunition, (d) dangerous articles. 

3.2.  Validity verification 

Dataset I and II are respectively input into the convolutional neural network model proposed in this 

paper for training and verification to test the validity of the model. The experimental parameters are: 

80% training set and 20% verification set, 25 batches, 50 iterations and 0.3 dropout. 

After 50 rounds of training, the loss of the training set and the recognition accuracy of the 

verification set are respectively shown in Figure 4 and Figure 5. 

 

 

Figure 4. Loss value reduction chart. 
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Figure 5. Recognition accuracy rate. 

 

Experimental analysis: The experimental results show that the proposed convolutional neural 

network model in dataset II drops faster and tends to zero than in dataset I, which shows that the 

model has better convergence in data set II, and proves the effectiveness of SMOT in dataset 

equalization. In addition, in each iteration, the recognition accuracy of dataset II is higher than that of 

dataset I. After 33 iterations, the average recognition accuracy of dataset II is stable at 90.7, which is 

57.3% higher than that of dataset I, which proves the validity of the convolutional neural network 

model proposed in this paper. 

3.3.  Method effect comparison  

To further verify the validity of a convolutional neural network model (myCNN) proposed in this 

paper, the recognition effect of myCNN is compared with that of GoogLeNet, AlexNet and ResNet on 

dataset II. The experimental results are shown in Table 3. 

 

Table 3. Dataset II recognition accuracy rate. 

Model name Recognition accuracy 

GoogLeNet 84.9% 

AlexNet 83.5% 

ResNet 85.3% 

myCNN 90.7% 

 

Experimental analysis: From table 2, we can see that the recognition accuracy of myCNN is 5.8%, 

7.2% and 5.4% higher than that of GoogLeNet, AlexNet and ResNet respectively, which further 

proves the validity of myCNN. 

4.  Conclusion 

In this paper, the problem of automatic recognition of dangerous goods in airport security inspection 

based on imbalanced dataset is studied, and a convolutional neural network model based on 

oversampling is proposed. The model can accurately recognize the images of dangerous goods with 

imbalanced distribution, and provides a method for automatic recognition of dangerous goods. The 
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next step is to migrate the model to a complex environment (such as multi-hazard occlusion, overlap, 

etc.), and to study the validity of the model and the new problems. 
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