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Abstract. Hybrid electric vehicles (HEVs) which combine at least two energy sources 
are characterized by high efficiency and seem to strongly support the objective to cut 
greenhouse gases. In this paper, hybrid electric bus (HEB) with coaxial series-parallel 
configuration is proposed and very little research on the economy optimization of this 
powertrain has been done. Considering that predictive control has the mechanism for 
controlling the nonlinear process while tackling equality or inequality constraints, 
nonlinear model predictive control (NMPC) is applied to the energy management 
strategy (EMS) for the HEB. The NMPC-based EMS is formulated and then converted 
into optimal control problem based on Pontryagin’s Minimum Principle (PMP) which 
can be solved with an iterative method. Finally, the architecture of the EMS problem 
established and the results of the proposed optimization strategy are illustrated and 
turn out to be satisfying. 

1.  Introduction 
Hybrid electric vehicle (HEV) is currently one of the hot spots of research and development of new 
energy vehicles due to their high efficiency. The performance of energy management strategy (EMS) 
directly affect the vehicle's fuel consumption, emissions and dynamic characteristics [1]. The key 
problem to be solved for the energy management strategy (EMS) of hybrid powertrain system is to 
distribute the power output between engine and electric machine (EM) and optimize the efficiency of 
the entire powertrain during the whole driving cycle under the premise of meeting the power demand 
of the driver. At present the EMS of HEV covers rules-based (RB) EMS, equivalent consumption 
minimization strategy (ECMS), and global optimization method [2]. 

Rule-based (RB) strategy defines the operation logic of the powertrain and sets the thresholds of 
engine torque output, battery state of charge (SOC), speed limit, etc. [3]. However, RB strategy is 
based primarily on the engineering experience and it cannot achieve the optimal system performance. 
EMS that based on dynamic programming (DP) could achieve global optimum but cannot be applied 
in real time since the calculation burden is huge and the whole driving condition cannot be anticipated 
in advance. ECMS strategy optimizes the vehicle energy flow in real time and minimizes the energy 
loss of the vehicle in each sampling period [4].  

These instantaneous optimization strategy is real-time-oriented with low robustness and have 
limited optimization effects, yet they can be improved in robustness and optimization performance 
through predictive control mechanism. Then, model predictive control (MPC) is adopted because this 
methodology is capable of realizing approximate optimal control within finite time domain. Plus, this 



ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 032100

IOP Publishing

doi:10.1088/1755-1315/252/3/032100

2

 
 
 
 
 
 

mechanism features the characteristic of processing explicit and active constraints and is suitable for 
solving EMS problem [5].  

The solution of nonlinear model predictive control (NMPC) has always been difficult since it is 
difficult to get an explicit expression of the control law and numerical solution method is required. 
Mathematic methods such as Multiple Shooting (MS) and sequential quadratic programming (SQP) 
are researched [6]. Some new optimization methods are explored including Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO) but the robustness is not guaranteed. In this paper, NMPC 
problem is converted into optimal control based on PMP and then the control variables are obtained by 
solving the large scale equations by an iterative method Newton’ method. The solution sequence is 
then obtained and closed-loop control of the whole vehicle powertrain is realized. 

The rest of this paper is organized as follows. In Section 2, modeling of the hybrid bus is 
introduced. And the problem is then described in the second part. In Section 3, the energy 
management optimization problem is integrated into NMPC framework and the mathematical solution 
method of NMPC is formulated. In Section4, the results of the proposed control strategy are analyzed 
and the performance is verified. Finally, conclusions are drawn in Section 5. 

2.  Configuration and modeling 

2.1.  Configuration 
The powertrain of the hybrid electric bus (HEB) is shown as follows. 
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Figure 1. The configuration of the HEB 
 

The powertrain comprises a CNG engine, a clutch actuator, two electric machines (EM), an 
automated mechanical transmission (AMT). This structure can regenerate much energy by 
coordinating two electric machines and provide more driving power for acceleration. 
The main parameters of the HEB are listed in Table 1. 
 

Table 1. Main parameters of HEB 

Components Parameters 
Engine YC6G230N,CNG, 6.454L, nominal power:170kW 

EM1 
Permanent magnet, max torque: 500Nm, 
nominal power :40kW,peak power:60kW 

EM2 
Permanent magnet, max torque: 750Nm, 

nominal power :94kW,peak power:121kW 
Battery Lithium titanate, capacity: 50Ah 

Transmission 6-speed AMT, gear ratio: 6.39/3.97/2.4/1.48/1/0.73 
Final Drive Ratio: 5.571 
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2.2.  Powertrain modeling 
The wheel torque is calculated by equation (1) to obtain the demand torque of the powertrain. 
 

               r [( ) ]e m1 T g m2 d bT = T +T i T i +T                                                   (1) 

 
Where wT , rT , eT , 1mT , 2mT , bT denotes the wheel torque, demand torque of the powertrain , torque 

of the engine, torque of EM1, torque of EM2 and the braking torque respectively. T , gi , di denotes 

the transmission efficiency, transmission gear ratio, gear ratio of the differential gear. 
The longitudinal dynamics equation of the vehicle is:  

 

21
[ cos sin ]

2w r D veh

dV
T mgf C AV mg m r

dt
                                           (2) 

 
In equation (2), m denotes the vehicle mass, g denotes the gravity acceleration, rf denotes the 

rolling resistance of wheel tire,  denotes the angle of the road, DC denotes the coefficient of the 

rolling resistance,  denotes air density,  denotes the correction coefficient of rotating mass, 
A denotes the front area of the bus, r denotes the radius of the wheel . 

And the rotational speed equation of the powertrain is as follows. 
 

1 2
veh

e m g m d

V
i i

r                                                           (3) 

 
Where e  , 1m  , 2m  and   denote the rotational speed of the engine,EM1,EM2 and the wheel 

respectively. To measure the fuel consumption of the engine, a steady state model is obtained from the 
steady state data of CNG engine. 

( , )

367.1
e e e e e

f
g

T b T
m

g

 


 


 
                                                          (4) 

 
Where gQ  denotes the fuel consumption per second, eT  and e  denote the torque and rotational 

speed of the engine respectively. eb  is the fuel consumption rate of the engine, g  is the CNG density. 

 

 

Figure 2. Fitting function of the engine fuel rate 
 

The battery model is simplified as an equivalent circuit consists of a voltage source and an internal 
resistance. 
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                                                    (5) 

 
Where batU  denotes the open circuit voltage of the battery pack. batR  denotes the internal resistance 

of the battery pack and batQ  denotes the capacity of the battery pack. batR  and batQ vary with SOC  and 
can be calculated by numerical fitting. 

In terms of the EMs, they can work as generator and motor so the electric power can be written as 
 
1 2sgn( ) sgn( )

1 1 1 2 2 2
m mT T

EM m m EM m m EMP T T                                             (6) 
 

Where EM denotes the efficiency of the EMs and is obtained by data fitted as follows. 
 

   

Figure 3. Fitting function of the efficiency EM1 and EM2 
 

The electric consumption is calculated by 

e batm U Q SOC                                                                 (7) 
Where Q denotes the battery capacity. 

3.  NMPC Control Scheme 

3.1.  Control-oriented model 
The task of the NMPC energy management strategy is to find an optimal control input to minimize the 
cost function, that is, to solve the following optimization problem in each sampling period. Nonlinear 
state-space model is used for NMPC and it can be expressed as 

 

 fx x , u                                                                  (8) 

 
Where the state variable T[ ]x SOC V , the control input 1 2[ ]T

m mu T T . Combining equation (3) and 

(5) with (1) (2) (4), the nonlinear state space model of this HEB is  
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            (9) 

 
The variables in the nonlinear state space model of HEB should be bounded and the corresponding 

nonlinearity constraints are 
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Where LSOC  and HSOC  refer to the limits of battery pack SOC. 
The cost function is set as the equivalent consumption of fuel energy and electricity.  
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Where the terminal constraint ( ( )) = 0x T ,   is the equivalent conversion factor of the two 
kinds of energy and can also serve as the adjustable weight coefficient of the cost function. 

Then the framework of the NMPC strategy is obtained shown in Figure 4. 
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Figure 4. Schematic of NMPC strategy 

3.2.  Numerical solution of NMPC 
Constrained optimization problem, especially nonlinear constrained optimization problem is 
sophisticated to solve in practical scientific research since nonlinear programming problem (NLP) is 
always difficult to deal with. Considering that it’s difficult to obtain an analytical solution of the 
control law by solving NLP due to the existence of nonlinearity and constraints, numerical method 
should be utilized at each sampling instant.  

In this section, the NLP is converted into Hamilton Jacobi-Bellman (HJB) equation with inequality 
constraints. According to PMP, inequality constraints are not easy to handle [9]. Therefore, a heuristic 
method that converts inequality constraints into equality constraints is formulated as 
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Where Tx SOC V   , T
m1 m 2u T T   , 1du  , 2du  and 3du  are three dummy inputs that guarantee the 

inequality constraints 1_ min 1 1 1_ max 1( ) ( )m m m m mT T T   , 2 _ min 2 2 2 _ max 2( ) ( )m m m m mT T T    and 

L HSOC SOC SOC  , respectively. 
The modified optimal control problem with the equality constraints and dummy control variables is 

summarized as follows. 
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d1 d2
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
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                                  (13) 

 

Where the fuel flow rate of engine fm  and the electricity consumption em  are the fitted function of 

engine map and EM efficiency map.   denotes the equivalent factor and is set as 0.461. 
According to PMP, the corresponding Hamiltonian function is defined as 

 
' '( ) ( ) ( ) ( )T TH x, ,u , = M x,u + f x,u + C x,u                                       (14) 

 

Where   nR  denotes co-state, R m   denotes the Lagrange multiplier associated with the 
equality constraints. The solution of the optimization problem could be found by the solving the 
equation group below.  
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The first equation and fourth equation of (15) could be discretized as 
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Where T / N  , T is predictive horizon which is set as 4.8 seconds,   denotes sampling 

period which is set as 0.4 seconds.  
Then the two sequences x (k) (k = 0…N) and ( )k (k = 0…N) are obtained and is then substituted 

into formula (15). The following formula is obtained. 
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Where the solution [ '(0), (0), ..., '( ), ( )]T T TU = u u N N  . This equation is solved at each sampling 

instant by the Newton’s method which is one iterative method and then the solutionU which contains 

the required control variables 1 2( )=[ ]T
m mu k T T is obtained. 

4.  Validation Results 
One certain energy management strategy must have a balance between optimization performance and 
the ability of practical application. So this section concentrates mainly on two aspects which are the 
computational performance of NMPC and the analysis of the comprehensive energy consumption.  

The computation test is performed in Simulink on an Intel Core i7 6700HQ CPU with a maximum 
computation capacity of 3.3 GHz. The length of predictive horizon is 12, the computation time of each 
iteration is 0.35 second less than the sample time of 0.4 second. 

To illustrate the effectiveness of NMPC strategy, a real-world driving curve is taken for testing and 
the results are described in Figure 5. 

 

 

Figure 5. Validation results of NMPC strategy 
 
The results demonstrated that the provided driving curve is tracked precisely by PID controller that 

models the driver’s intension. Plus, SOC, Tm1 and Tm2 are restricted to the boundary. Therefore, 
constraints of both state variables and control variables are tackled properly.  

The two calculated control variables Tm1 and Tm2 are drawn and their operating points and 
corresponding efficiency maps are drawn in Figure 6.  
 

 

Figure 6. The operating points of EM1 and EM2, respectively 
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The torque of engine is calculated by equation (1) and the operating points of engine is obtained 
and plotted in different color shown as follows. 

 

 

Figure 7. The operating points of engine 
 

According to the distribution of operating points of the engine, EM1 and EM2 above, the three 
power sources operate mainly in high efficiency region. This means that the cost function of the 
NMPC is optimized and satisfying optimization performance is guaranteed accordingly.  

5.  Conclusion 
This paper focuses on the EMS of HEB based on an optimal control scheme NMPC. The 
configuration of the HEB powertrain are presented and the modeling of each components of the 
powertrain is established and lays the foundation for NMPC based optimization strategy. The NMPC 
problem is then converted into an optimal control framework by PMP and is solved by iterative 
algorithm with acceptable calculation speed. On this basis, the whole NMPC architecture is realized 
and the test results show satisfying energy optimization performance and it is demonstrated that 
NMPC can control a nonlinear process while tackling the constraints of variables. It can be seen from 
the test results of operating point distribution that engine and EMs are operating in high efficiency 
region, yet no analysis of coordinated control between engine and EM is done which should be the 
future work to do.  

Acknowledgements 
This work was sponsored by The Fundamental Research Funds for the Central Universities 
(2018JBM059) and National Natural Science Foundation of China (61401017).  

References 
[1] D. Zhao, R. Stobart, G. Dong and E. Winward, "Real-Time Energy Management for Diesel 

Heavy Duty Hybrid Electric Vehicles," in IEEE Transactions on Control Systems 
Technology, vol. 23, no. 3, pp. 829-841, May 2015. 

[2] C. M. Martinez, X. Hu, D. Cao, E. Velenis, B. Gao and M. Wellers, "Energy Management in 
Plug-in Hybrid Electric Vehicles: Recent Progress and a Connected Vehicles Perspective," in 
IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 4534-4549, June 2017. 

[3] B. V. Padmarajan, A. McGordon and P. A. Jennings, "Blended Rule-Based Energy 
Management for PHEV: System Structure and Strategy," in IEEE Transactions on Vehicular 
Technology, vol. 65, no. 10, pp. 8757-8762, Oct. 2016. 

[4] Stockar S, Marano V, Canova M, et al. Energy-optimal control of plug-in hybrid electric 
vehicles for real-world driving cycles [J]. IEEE Transactions on Vehicular Technology, 60 
(7): 2949-2962, 2011 



ESMA 2018

IOP Conf. Series: Earth and Environmental Science 252 (2019) 032100

IOP Publishing

doi:10.1088/1755-1315/252/3/032100

9

 
 
 
 
 
 

[5] Shuo Zhang, Rui Xiong, Fengchun Sun, “Model predictive control for power management in a 
plug-in hybrid electric vehicle with a hybrid energy storage system,”Applied Energy, 
Volume 185, Part2, Pages 1654-1662, 2017. 

[6] J. Zhang, T. Shen, T. Sawada and M. Kubo, "Nonlinear MPC-based power management 
strategy for plug-in parallel hybrid electrical vehicles," Proceedings of the 33rd Chinese 
Control Conference, Nanjing, pp. 280-284, 2014. 


