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Abstract. With the continuous improvement of wind power generation technology, the 
installed capacity of wind farms and the scale of wind power interconnection are increasing, 
which brings huge economic benefits to our country, at the same time, alleviates energy 
security and brings environmental benefits. However, as an intermittent power supply, the 
fluctuation and uncertainty of wind power increase the difficulty of security dispatch of power 
grid and increase the burden of system reserve capacity. Based on this, aiming at single-point 
wind power prediction and support vector machine method, this paper studies the improved 
support vector machine wind power prediction based on genetic algorithm. In the prediction 
model of support vector machine, the improper setting of parameters will lead to the 
phenomenon of "under-learning" or "over-learning", which directly affects the prediction 
accuracy. In this paper, genetic algorithm is used to optimize the parameters. The example 
shows that the GA-SVM model has a better prediction effect than the model with default 
parameters. 

1.  Introduction 
Based on economic and social benefits, wind power generation has attracted worldwide attention and 
become the fastest growing renewable energy in the world. Many countries have taken the development 
of wind power generation as an important measure to improve energy structure, protect the ecological 
environment and reduce environmental pollution, and incorporated it into the national energy 
development plan [1-2]. It is expected that the proportion of wind power in the whole energy structure 
will gradually increase and become the most important clean energy in the 21st century [3]. However, 
due to the randomness, volatility and uncontrollability of wind, this uncertainty will affect the security 
and stability of the power grid, increase the difficulty of dispatching, and increase the backup burden of 
the entire power network [4]. Therefore, accurate prediction of wind power is becoming more and more 
important. 

Wind power prediction plays an important role in wind farm operation and power grid dispatching. 
Based on power characteristic curve of wind farm, an estimation method for wind power prediction 
error distribution is proposed in paper [5]. In order to make system operate economically and reliably, a 
multi-objective unit commitment optimization model was proposed based on comprehensive 
consideration of negative peak load regulation capability and operation cost of conventional generators 
in paper [6]. Characteristics analysis of wind power forecasting error can provide more accurate 
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reference for optimal dispatch and stable operation of power system in paper [7]. This paper proposed a 
numerical error characteristics analyzing approach which stratified the errors into different layers 
according to the probability density of the ultra-short-term wind power forecasting errors. A method of 
probabilistic wind power forecasting with the consideration of ramp characteristics is proposed in paper 
[8]. To control harmful wind power events, this paper proposed a combined model of different 
meteorological variables to realize wind power prediction with high accuracy in paper [9]. In paper [10], 
an intelligent multi-objective optimized prediction interval (PI) model for wind power is proposed with 
wavelet neural network as its basic prediction model. 

Wind power prediction is an interdisciplinary application and also a mutual fundamental discipline. 
Global state-of-art of prediction error is even below 3%, whereas in China more efforts should be made 
to top out. According to present trend, benefits of accuracy improvement from accumulative data slow 
down, and incredible breakthrough of numeric weather prediction (NWP) is unexpected. For wind 
power prediction in near future, it is important to improve prediction skills in every step considering 
NWP limits, select and combine proper methods to reduce the final 2%-3% in error learning curve[11]. 
Aiming at wind power single point value prediction and support vector machine method, this paper 
studies wind power prediction based on improved support vector machine based on genetic algorithm. 
The parameters are optimized by genetic algorithm. Under the condition of guaranteeing accuracy, 5 
fold cross validation is adopted, and the mean square error of the model under different parameters is 
selected as the result. Criteria for evaluating the quality of models. Through cross validation, the 
minimum mean square error prediction model is determined, and the optimal parameters are found. 
The example shows that the GA-SVM model has a better prediction effect than the model with default 
parameters. 

2.  SVM nonlinear regression 
Support Vector Machine Regression (SVM) is a learning method based on VC dimension theory and 
structural risk minimization principle. It seeks the best compromise between model complexity and 
learning ability according to limited sample information in order to obtain the best generalization ability. 

For input samples d
iX R , the corresponding output is iY R , a training set containing N samples, 

which can be expressed as: 
 

1 1 2 2{( , ), ( , )...( , )}N Ns X Y X Y X Y (1)
 
The basic idea of SVM regression is to obtain the parameters of the model by optimizing the 

training sample set, and to establish the corresponding relationship between input and output, so that 
the estimated value of output can be obtained for any given new input sample. 
The linear regression function can be written as follows: 
 

( ) Tf X w X b g (2)

 
Insensitive loss function    is introduced to ensure the existence of the global optimal solution and 

to satisfy the generalization ability. Under the given precision, and assuming that all training samples 
can be fitted without error under this precision, the following constraints are formed: 
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According to the SVM regression method, the coefficients w  are determined by minimizing the 

objective function. According to the concepts of interval and geometric interval in statistical theory, 
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the coefficients are equivalent to minimization 21
|| ||

2
w . At the same time, penalty parameters C  are 

introduced to balance the minimum training error, and the regression problem is equivalent to the 

quadratic convex optimization problem about the w and b. Further relaxation variables *0, 0i i    
are introduced to deal with other allowable fitting errors in the optimization problem, and the objective 
function is further transformed into the following optimization problems: 
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In formula (4), 21
|| ||

2
w is empirical risk, 

*
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 is. confidence risk, which satisfies the 

principle of structural risk minimization. 
Then, the Lagrange function is introduced to the dual problem, and the KKT (Karush-Kuhn-Tucker) 

condition is used to calculate the dual problem. Finally, the principle of structural risk minimization is 
obtained. 

When the relationship between input and output is complex, it is impossible to describe the 
corresponding relationship between input and output through a simple linear model, which requires 
SVM non-linear regression. Its basic idea is to map dX R  to a high-dimensional space by a pre-
determined non-linear mapping, in which the non-linear regression operation in low-dimensional 
space is transformed into linear regression operation in high-dimensional space. 
The nonlinear function model can be written as follows: 
 

( )( ) ( )Twf X X b  g (5)

 
The model optimization function is updated to: 
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However, there is no systematic method to find the appropriate non-linear function; even if this ( ) g  
is found, the dimension of the mapped high-dimensional feature space is often very large and the direct 
inner product is very complex. In this case, by introducing the kernel function, the inner product of 
high-dimensional space can be obtained directly after input in low-dimensional space. 

In other words: 
 

( ) ( ) ( )Tf X w X b  g  

 

(7)
 

( ) ( , )g X K w X b   (8)
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Statistical learning theory points out that the kernel function as SVM must satisfy the Mercer 

condition. The common kernel functions are: 
(1) Linear kernel function:  
 

( , ) ( )i j i jK x x x x g (9)

 
The simplest kernel function is equivalent to direct computation in low dimensional space. 
(2) Polynomial kernel function:  
 

( , ) [( ) 1]d
i j i jK x x x x d R   g (10)

 
Polynomial kernel function has poor local performance, and far away samples will also affect the 

regression curve. The parameter refers to the dimension of the polynomial kernel function. If it is too 
large, the computational complexity will be greatly increased, and at the same time, it will lead to 
"over-fitting".  

(3) RBF kernel function:  
 

2( )( , ) ix x
i jK x x e   (11)

 
The local performance of RBF kernel function is excellent, but the selection of parameters needs 

special attention. 
Among them, the RBF kernel function is the most widely used kernel function. Compared with 

linear kernels, it can map a sample to a higher dimensional space. It can be said that linear kernels are 
only a special case of RBF kernels. Compared with polynomial kernels, RBF kernels need to 
determine relatively few parameters, the number of parameters directly affects the complexity of the 
function; in addition, when the order of polynomial kernels is relatively high, the calculation will 
become very difficult, and the program runs very time-consuming. 

In this paper, RBF kernel function is selected as the kernel function used in support vector machine 
modeling, and genetic algorithm is used to optimize its parameters. 
 

3.  Support vector machine improved by genetic algorithm 

3.1.  Optimize target parameters  
This paper optimizes the most widely used RBF kernel function parameters   and error penalty factor 
C. 

In order to further improve the prediction effect of support vector machine and reduce the prediction 
error, genetic algorithm is used to optimize these two parameters. 

In this paper, under the condition of ensuring accuracy and considering the running time of the 
program, the average mean square error of the model under different parameters is selected as the 
evaluation criterion of the model. Through cross validation, the minimum mean square error prediction 
model is determined, and the optimal parameters are found. 

Based on the theoretical basis of support vector machine (SVM), this paper uses genetic algorithm 
(GA) and cross validation as evaluation criteria to optimize the key parameters C and   in SVM, and 
establishes a GA-SVM prediction model, which is validated by several sets of data in an example. 

3.2.  Selection of input variables for models  
Linear correlation analysis is used to analyze the real-time data of a wind farm to determine the input 
parameters of the model. 
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Linear correlation coefficient r : 
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The value range of r  is [-1,1]. 0r   is positive correlation, 0r   is negative correlation, | | 0r   

indicating that there is no linear relationship, | | 1r   indicating a complete linear relationship. 

| | 0.3r  : there is no linear correlation. 

0.3 | | 0.5r  : low linearity correlation; 

0.5 | | 0.8r  : significant linear correlation. 

| | 0.8r  : highly linear correlation. 
Based on the above correlation analysis, for the independent variable input of SVM, four 

independent variables are selected as NWP predicting wind speed and tracing back three historical 
power points. 

Mean relative error (MAPE), mean square error (MSE), root mean square error (RMSE) were used 
as the evaluation criteria of model prediction effect. 
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In formula, iA  is the true value of the i prediction point. iP  is the prediction value of the i 

prediction point, and N is the number of the prediction points. 

4.  Case study 
In this case, the 10-day data of a wind farm is used as training set. The sampling period is 5 minutes, 
totaling 2880 time periods. The 24 hours after selecting training set samples, the sampling period is 5 
minutes, totaling 288 time periods. The input of the model is NWP forecasting wind speed and 
retrospective 3-point historical power, with a total of 4 independent variables; the output of the model 
is the wind speed of the forecasting point. This section predicts a single point prediction method. 
Data normalization preprocessing: 
 

^
min

max min

i
i

x x
x

x x




 (14)

 
The essence of normalization is to transform the dimension into dimensionless without changing 

the physical meaning of the data, and map the uncertain range to the definite range, so that the data 
can be controlled and the complexity of the model can be reduced effectively. 
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For training set and test set, the default parameters and optimized parameters are used to model and 
predict respectively. The predicted results are shown in Figure 1. 
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Figure 1. SVM Prediction Results under Default Parameters and GA Optimized Parameters 
 
The experimental results show that the relative error, mean square error and root mean square error 

are all reduced and the prediction accuracy is improved after using genetic algorithm to optimize the 
parameters of kernel function and penalty parameter. 

From the above analysis results, we can see that for the sample selected in this section, because the 
sample data itself is relatively ideal, the SVM method has higher prediction accuracy and better 
prediction effect. However, in practical production applications, bad data may occur due to data loss, 
data errors and other reasons in the process of data acquisition, communication and storage of wind 
farms, which may have a certain impact on the prediction effect of wind power. In order to verify the 
prediction effect of GA-SVM when bad data appear. In this section, we do some research on the above 
examples by adding artificial disturbance. 

Using the processed training set data to model and using the same test set sample input, the 
prediction results are obtained, as shown in Figure 2: 
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Figure 2. Prediction effect of SVM with a large number of error data in training set 
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Through the observation and analysis of Figure 2, it can be seen that the prediction effect of SVM 
is still good under the condition that there are a lot of wrong data in the training set. This is due to the 
combined effect of relaxation variables and penalty functions in the process of support vector machine 
modeling. A few support vectors which play a decisive role in the prediction effect are selected to 
automatically eliminate the influence of those obviously unreasonable training set samples. Therefore, 
when a large number of error data appear in the training set samples, the support vector machine can 
also show a more accurate prediction effect, which shows that the SVM method has good anti-
jamming performance. 

5.  Conclusion 
In this paper, based on the single point value prediction of wind power, the following conclusions are 
obtained from the research of support vector machine method: 

In the prediction model of support vector machine, the parameter setting plays an important role. 
The improper parameter setting often leads to the phenomenon of "under-learning" or "over-learning", 
which directly affects the prediction accuracy. In this paper, the genetic algorithm is used to optimize 
the parameters. Compared with the model with default parameters, the prediction effect of GA-SVM 
model has been significantly improved. 
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