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Abstract. In this paper, the positioning system for precision machining table has been realized 
through Planar Magnetic Levitation System. The Planar Magnetic Levitation System has 
nonlinearity and structural uncertainties, so the interval matrix minimum upper bound method is 
to design robust control. The simulation result shows that with the controller the Planar Magnetic 
Levitation closed-loop system has the strong robustness, the speed of response is quick and 
machining precision can be effectively improved. 

1.  Introduction 
Micromachining is needed in microelectronics packaging industry. Ultra-precision workbench required 
for processing is realized by an ultra-precise motion control system with nanometer precision. Such 
systems must overcome the effects of friction and have sufficient travel [1]. It is especially difficult to 
achieve for ultra-precision workbench with large stroke and multiple degrees of freedom. 

Using electrostrictive ceramics can avoid friction and achieve high motion accuracy [2]. However, 
the stroke is generally less than one millimeter, so the currently used equipment consists of two parts: 
highly accurate motion by electrostrictive ceramics, and large stroke coarse positioning linear movement 
mechanism. Such ultra-precision workbench, the rough positioning system has friction and wear, the 
structure and control method of the worktable are complicated, and the installation and debugging are 
difficult, which is not conducive to further improvement of the motion precision and long-term 
maintenance. Due to the mechanical connection, the accuracy of the lithography process is affected, and 
the electrostrictive ceramics also have nonlinear hysteresis. In addition, the air suspension guide can 
also eliminate friction. However, the disturbance of the compressed air during release causes 
uncontrolled high-frequency jitter on the workbench, and the system of this structure cannot be used in 
a vacuum environment. Ultra-precise motion control system based on direct drive of magnetic levitation 
and linear motor can completely eliminate Coulomb friction and avoid the shortcomings of air 
suspension. The accuracy index of the motion system depends in principle only on the quality of the 
displacement sensor. The highest precision of precise positioning using magnetic levitation technology 
has reached 3nm [3]. The advantage of using magnetic levitation is not only in terms of accuracy. In the 
realization of multi-degree-of-freedom movement, if the conventional guide rail and bearing are used as 
the support and guidance of translation and rotation respectively, the mechanical structure of the system 
becomes very complicated with the increase of the degree of freedom, and the rigidity of the system 
decreases. When the magnetic levitation method is adopted, the mechanical structure of the system 
becomes simple, and the components with precision requirements are also greatly reduced. 
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This paper studies the use of electromagnets to form a planar magnetic levitation system with two 
degrees of freedom (2 DOF) and a large operating range in one plane, and avoids the above limitations. 
As shown in the system of Figure 1, three electromagnets are evenly spaced on the plane (A minimum 
of three electromagnets is required to achieve two degrees of freedom). We want to control the position 
of the ferromagnetic material disc placed in the area surrounded by it. The disc is suspended on the plane 
by the repulsive force of the independently controllable fourth electromagnet, and the vertical air gap 
between them can be adjusted. In addition to eliminating the friction, it has little relationship with our 
positioning system. We are concerned with the positioning subsystem in the horizontal direction. 

 

 

Figure 1. Planar Magnetic Levitation System 

2.  Mathematical model of plane magnetic levitation precise positioning system 
In the system shown in Figure 1, the force analysis of the disc is described in detail in [4] and [5]. The 
force of the disc in the x, y direction is: 
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xF  and yF  are the electromagnetic forces of the disk in the x  and y  directions, respectively, x  

and y  are the displacement of the disk in the x and y directions, the control inputs 1I , 2I  and 3I  are the 

currents of the respective electromagnet coils, and m is the disk quality. 
),,( yxxx   and ),,( yyxy   indicate the influence of other factors on the system (such as the 

magnetic line edge effect), which indicates the uncertainty of the system, 1L : electromagnet core length, 

2L : disc diameter, 1N , 2N , 3N  are electromagnet windings Number of turns, 1A  is the cross-sectional 

area of the electromagnet core, 2A  is the cross-sectional area of the disc, 0  is the vacuum permeability, 

r 01   is the magnetic permeability of the core material, r 02   is the magnetic permeability 

of the disc material, d  is The distance between the end face of the electromagnet and the edge of the 
disc when the disc is at the origin (as shown in Figure 1). 

Define state variables: 
 

TT yyxxxxxx ][][ 4321 X                        (2) 

 
Disc motion equation: 
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Available from Equation (1) (2) (3): 

 
































 



),,()
2

3
)(,()

2

3
)(,())(,(

2

1

),,()
2

)(,()
2

)(,())(,(
2

1

431
2
33

2
22

2
11

10
4

43

321
2
33

2
22

2
11

10
2

21

xxxIdxyxIdxyxIxyx
mA

x

xx

xxxI
d

xyxI
d

xyxIdxyx
mA

x

xx

y

x















 (4) 

3.  Precision Linearization System Design LQR Controller 
The nonlinear system described in equation (4) can be converted to the following Bruno sky standard 
type by a special feedback transformation ),(][ 2

3
2
2

2
1 UXTIII  when considering the ideal case of 

),,( 321 xxxx =0 and ),,( 431 xxxy =0, see [6]. 
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Controller KXU  Tuu ],[ 21  is designed using a linear quadratic regulator (LQR) method for a 

real symmetric weighting matrix QR,  for a given amount of control and state quantities. There is a 
feedback gain vector PBRK T1 , in which P  is the solution that satisfies the following Riccati 
equation: 

 
0QPBPBRPAPA   TT 1                                                  (7) 

4.  Robust controller based on interval matrix design 
Lemma [8] Let the n-th order Hermite matrix EAA  01 , ),...2,1(,, niii    be the eigenvalues of 

the matrix 01,AA  in descending order, and ,max min is the maximum and minimum eigenvalues of the 

matrix E, then 
 

),2,1( niiiiii                                          (8) 

 
Let A  be the interval matrix to be determined (to describe the system uncertainty), then the 

following theorem for system BUXAAX  )( : 
Theorem: Let P  be the solution of the following Riccati algebraic equation 

 

0QPBPBRPMPM   TT 1  ( QR,  is a real symmetric matrix)           (9) 

 
And make the Hermite matrix 02112   PBBRBBRP TT . In which A

T
 EAAM ]2/)[( , 

AE  is the least upper bound of the matrix set 

}2/),...(2/)(,2/){( 2211
T
dd

TT AAAAAAΨ  , d  is the number of vertices of the interval 

matrix A , and iA  is the i th （ di ,...2,1 ）vertex of A , then the feedback control law 

PXBRU T1  makes the closed-loop asymptotic stability of the system. 
Prove: 
Let PBBRMM T1


, by the theorem, M  is a real symmetric matrix, soM = TM , then: 
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Available from the lemma: minmax   iii  
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The definition of the minimum upper bound of the set of matrices in the theorem and the algorithm 
for solving the least upper bound of the set of matrices can be found in the literature [7]. If the uncertainty 
parameter in A  is N, then the number of vertices of A  is N2 . And it is noted that in the processing 

of the uncertainty term 2/)( T
ii AA  , the minimum upper bound matrix AE  is adopted, thereby 

improving the possibility that the robust control has a solution, and also effectively reducing the size of 
the P -array. 
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Select the real symmetric matrix QR , to solve the equation (9), and set the solution to 0P , then the 
robust feedback control law of the system is XPBRU 0

1 T  

5.  Simulation studies 
Set system parameter 7

0 104   , 700r , mL 1000.01  , mL 0167.02  , md 0500.0 , 
kgm 5000.0 , mh 0083.0 , 100N , 2

1 01.0 mA  . Assume that the system uncertainty is 

231321 ),,( xxxxxxx   , 431431 ),,( xxxxxxY   , 01.0,1.1   . 

 

 
(a) Response of X position                                                   (b) Response of Y position 

Figure 2. Simulation results 
 
When simulating the two controllers designed above, the sampling period is 0.5ms, and the same 

weighting matrix is selected: 

 2000,700,100,5000diagQ , 









5000100

1005000
R . 

The simulation results are shown in Fig. 2. It can be seen that the precise linearized LQR  controller 
of the above design is unstable, and the robust controller is not only stable but the steady-state error is 
very small. 

6.  Conclusion 
In this paper, a planar magnetic levitation system is proposed and a mathematical model is established. 
A robust controller is designed for this nonlinear uncertain system. The simulation results show that the 
robust controller based on interval matrix design has strong stability robustness and performance 
robustness to system structural uncertainty, and has fast tracking performance. 
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