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Abstract. All graphs in this paper are simple and connected graph. A vertex
dynamic coloring is a proper vertex k-coloring of graph G such that |c(N(vi))| ≥
min{r, d(v)} and the neighbourhood of vertex u has different colors. A bijection
f : E(G) → {1, 2, 3, ...,m} is called a local antimagic dynamic coloring, such that:
(1) if uv ε E(G), where w(u) =

∑
eεE(u) f(e) and (2) for each vertex v ε V (G),

|w(N(vi))| ≥ min{r, d(vi)}. The local antimagic vertex dynamic chromatic number
denoted by χlar (G)is the minimum number of colors needed to color G in such a way
the graph G to be local antimagic vertex dynamic graph. In this paper, we will study
the existence of the local antimagic vertex dynamic chromatic number of some graph
classes, namely caterpilar, doublebroom, broom and sun graph.

1. Introduction
In this paper, all graph are simple and connected graph namely caterpilar, doublebroom,
broom and sun graph. A graph G = (V,E ), V(G) is non-empty vertex set and E(G)
is the set that may be empty pairs of u,v where u,v ε V(G). Suppose u,v is vertex of
graph G, u is adjacent to v when there has side connecting u and v. N(u) is a notation
of all the neighbors u.

The concept r-dynamic coloring of a graph G induces a proper k-coloring of graph G
with the result that the neighbors of any vertex v receive at minimum{r, d(v)} different
colors. Vertex dynamic coloring of graph G is giving different colors to each neighbors of
any vertex v receive at minimum {r, d(v)}. This concept was introduced by Montgomery
[7]. Some paper discusses about r-dynamic chromatic numbers, for instance in [1], [2],
[5], [6], [7], [8], [9], [10], [11], [13], and [12].
This paper introduce new concept which have combines local antimagic labeling and
r-dynamic.
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Figure 1. a.) Graph of group ; (b.)Patients in Big Rooms

Definition 1.1. [3] Let G = (V,E) be a graph of order n and size m having no isolated
vertices. A bijection f : E(G) → {1,2,3,..., m} is called local r-dyamic coloring, such
that : (1) If uv ε E(G), then w(u) 6= w(v), where w(u) = Σe∈E(u)f(e) ; (2) For each v ε
V(G), |w(N(v))| ≥ min{r, d(v)}.

Definition 1.2. [3] The local antimagic r-dynamic chromatic number, denoted by χla
r (G)

is the minimum k with the result that graph G has a local antimagic r-dynamic vertex
k-coloring induced by local antimagic labelings.

Potential aplication is in a hospital because there are big rooms. In every big room,
there were some beds which were put side by side. There were so many patients in the
hospital, therefore, the sick people who are enter to the room must be put maximumly.

The doctors anticipated the condition so that the disease will not spread to other
patients. For these anticipations, the doctors separated the patients who have the same
blood type, because the patients who have the same blood type will easily infected by
the disease. So, there is no patient who is close to other patients who have the same
blood type. Patients in big rooms are represented as vertices and big rooms as edge.
This can be presented as in a figure. This can be presented as in a figure 1 .

No patient is close to the same type of blood then the big room has a design like
figure 1. Red is a patient with blood type A, blue is a patient with blood type B, green
is a patient with blood type O, and purple is a patient with blood type AB. That is one
example of a vertex dynamic coloring application in life.

Another application is the food menu on the food court. In a food court area, there
are 9 places available for several types of food. But there cannot be 2 similar foods close
together. This can be represented as in figure 2. The vertex represents the food stand
and the edge represents the road. The vertex coloring of the graph is:

There is no food stand that sells similar food items in adjacent places like figure 2.
Food type 1 is represented in red, food type 2 is represented in blue and the third type
of food is represented in green so that there are maximum 3 types of food that can be
sold in the food court.
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Figure 2. a.) Graph of group ; (b.)The food menu on the food court

Figure 3. Caterpilar Graph (C10,1)

2. Main Results
In this section, we we study the existence of local antimagic vertex dynamic coloring of
some graphs. We determine the exact values of the local antimagic coloring of sun (Mn),
caterpilar (Cn,1) , doublebroom (DBrn,m) and broom (Brn,m).

Theorem 1. Let G ∼= (Cn,1) be a caterpilar graph of (Cn,1) with n ≥ 3, χla
r (G) of (Cn,1)

is:

χla
r ((Cn,1)) ≤

{
n+ 2; n = 3
n+ 3; n ≥ 4

Proof. (Cn,1) is a connected graph with V((Cn,1)) = {xi; yi; 1 ≤ i ≤ n} and E((Cn,1))
= {xiyi; 1 ≤ i ≤ n}

⋃
{xixi+1; 1 ≤ i ≤ n − 1}. Then |V ((Cn,1))| = 2n and |E((Cn,1))|

= 2n-1.
Define a bijection f : E((Cn,1)) → {1,2,3,... |E((Cn,1))|} with the following function :

For n = 3 :

f((xiyi)) =

 n+ 1 ; i = 1
n+ 2 ; i = 2
n+ 3 ; i = n

For n = 4 :

f((xiyi)) =


n ; i = 1
n+ 3 ; i = 2
n+ 1 ; i = 3
n+ 2 ; i = n
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For n = 5 :

f((xiyi)) =


n+ 1 ; i = 1
n+ 3 ; i = 2
n+ 4 ; i = 3
n+ 2 ; i = 4
n ; i = n

For n = 6 :

f((xiyi)) =



n ; i = 1
n+ 4 ; i = 2
n+ 5 ; i = 3
n+ 3 ; i = 4
n+ 1 ; i = 5
n+ 2 ; i = n

For n = odd :

f((xiyi)) =

{
n+ 1 ; i = 1
n ; i = n

For i = even :

f((xiyi)) =

{
n ; i = 1
n+ 1 ; i = n− 1

For n is even and n ≥ 7 ; n = 0 mod 6:

f((xiyi)) =

 2n− i− 1 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 1 mod 6:

f((xiyi)) =

 2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is even and n ≥ 7 ; n = 2 mod 6:

f((xiyi)) =

 2n− i+ 1 ; i ≡ 0 mod 3
2n− i ; i ≡ 1 mod 3
2n− i− 1 ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 3 mod 6:

f((xiyi)) =

 2n− i ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3

For n is even and n ≥ 7 ; n = 4 mod 6:

f((xiyi)) =

 2n− i ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3
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For n is odd and n ≥ 7 ; n = 5 mod 6:

f((xiyi)) =

 2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n ≥ 3 :

f((xixi+1)) =


i+1
2 ;n = odd i ≡ odd

n+i+1
2 ;n = odd i ≡ even

i+1
2 ;n = even ; i ≡ odd

n+i
2 ;n = even ; i ≡ even

Hence f is a local antimagic labelling of (Cn,1) and we have the vertex weight as
follows :

For n = 3 :

W ((yi)) =

 n+ 1 ; i = 1
n+ 2 ; i = 2
n+ 3 ; i = n

W ((xi)) =

 n+ 2 ; i = 1
2n ; i = 2
2n+ 2 ; i = n

For n = 4 :

W ((yi)) =


n ; i = 1
n+ 3 ; i = 2
n+ 1 ; i = 3
n+ 2 ; i = n

W ((xi)) =

 n+ i ; i ≡ 1 mod 3
2n+ 3 ; i = 2
2n+ 2 ; i = 3

For n = 5 :

W ((yi)) =


n+ 1 ; i = 1
n+ 3 ; i = 2
n+ 4 ; i = 3
n+ 2 ; i = 4
n ; i = n

W ((xi)) =

 n+ 2i ; i ≡ 1 mod 3
3n− i− 1 ; i ≡ 2 mod 3
3n− 1 ; i = 3
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For n = 6 :

W ((yi)) =



n ; i = 1
n+ 4 ; i = 2
n+ 5 ; i = 3
n+ 3 ; i = 4
n+ 1 ; i = 5
n+ 2 ; i = n

W ((xi)) =


n+ 1 ; i = 1
5n
2 ; i ≡ 2 mod 3
5n+4

2 ; i ≡ 0 mod 3
5n+2

2 ; i ≡ 1 mod 3
2n− 1 ; i = n

For n ≥ 7 ; n = 0 mod 6 :

W ((xi) =


5n−2

2 ; i ≡ 0 mod 3
5n+2

2 ; i ≡ 1 mod 3
5n
2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 1 mod 6 :

W ((xi) =


5n+3

2 ; i ≡ 0 mod 3
5n+1

2 ; i ≡ 1 mod 3
5n−1

2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 2 mod 6 :

W ((xi) =


5n+2

2 ; i ≡ 0 mod 3
5n+2

2 ; i ≡ 1 mod 3
5n−2

2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 3 mod 6 :

W ((xi) =


5n−1

2 ; i ≡ 0 mod 3
5n−3

2 ; i ≡ 1 mod 3
5n+1

2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 4 mod 6 :

W ((xi) =


5n
2 ; i ≡ 0 mod 3
5n+4

2 ; i ≡ 1 mod 3
5n+2

2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 5 mod 6 :

W ((xi) =


5n+3

2 ; i ≡ 0 mod 3
5n+1

2 ; i ≡ 1 mod 3
5n−1

2 ; i ≡ 2 mod 3
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For n = odd :

W (yi)) =

{
n+ 1 ; i = 1
n ; i = n

For n = even :

W (yi)) =

{
n ; i = 1
n+ 1 ; i = n− 1

For n is even and n ≥ 7 ; n = 0 mod 6:

W (yi)) =

 2n− i− 1 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 1 mod 6:

W (yi)) =

 2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is even and n ≥ 7 ; n = 2 mod 6:

W (yi)) =

 2n− i+ 1 ; i ≡ 0 mod 3
2n− i ; i ≡ 1 mod 3
2n− i− 1 ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 3 mod 6:

W (yi)) =

 2n− i ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3

For n is even and n ≥ 7 ; n = 4 mod 6:

W (yi)) =

 2n− i ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 5 mod 6:

W (yi)) =

 2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

W ((y1)) =

{
n+ 1 ; for n = odd
2n− 1 ; for n = even

W ((yn)) =


2n− 1 ; for n = odd
5n−2

2 ; for n = even; n 6= 10
3n+4

2 ; n = 10
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Figure 4. Caterpilar Graph (C10,1)

It is clear that f is local antimagic vertex dynamic coloring of (Cn,1). Finally, χla
r

≤ n+2 for n = 3 and χla
r ≤ n + 3 for n ≥ 4. The proof is complete.(Cn,1) is a

connected graph with V((Cn,1)) = {xi; yi; 1 ≤ i ≤ n} and E((Cn,1)) = {xiyi; 1 ≤ i ≤ n}⋃
{xixi+1; 1 ≤ i ≤ n− 1}. Then |V ((Cn,1))| = 2n and |E((Cn,1))| = 2n-1.
Define a bijection f : E((Cn,1)) → {1,2,3,... |E((Cn,1))|} with the following function

:

For n = 3 :

f((xiyi)) =

 n+ 1 ; i = 1
n+ 2 ; i = 2
n+ 3 ; i = n

For n = 4 :

f((xiyi)) =


n ; i = 1
n+ 3 ; i = 2
n+ 1 ; i = 3
n+ 2 ; i = n

For n = 5 :

f((xiyi)) =


n+ 1 ; i = 1
n+ 3 ; i = 2
n+ 4 ; i = 3
n+ 2 ; i = 4
n ; i = n

For n = 6 :

f((xiyi)) =



n ; i = 1
n+ 4 ; i = 2
n+ 5 ; i = 3
n+ 3 ; i = 4
n+ 1 ; i = 5
n+ 2 ; i = n

For n = odd :

f((xiyi)) =

{
n+ 1 ; i = 1
n ; i = n

For i = even :

f((xiyi)) =

{
n ; i = 1
n+ 1 ; i = n− 1
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For n is even and n ≥ 7 ; n = 0 mod 6:

f((xiyi)) =

 2n− i− 1 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 1 mod 6:

f((xiyi)) =

 2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is even and n ≥ 7 ; n = 2 mod 6:

f((xiyi)) =

 2n− i+ 1 ; i ≡ 0 mod 3
2n− i ; i ≡ 1 mod 3
2n− i− 1 ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 3 mod 6:

f((xiyi)) =

 2n− i ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3

For n is even and n ≥ 7 ; n = 4 mod 6:

f((xiyi)) =

 2n− i ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 5 mod 6:

f((xiyi)) =

 2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n ≥ 3 :

f((xixi+1)) =


i+1
2 ;n = odd i ≡ odd

n+i+1
2 ;n = odd i ≡ even

i+1
2 ;n = even ; i ≡ odd

n+i
2 ;n = even ; i ≡ even

Hence f is a local antimagic labelling of (Cn,1) and we have the vertex weight as follows
:

For n = 3 :

W ((yi)) =

 n+ 1 ; i = 1
n+ 2 ; i = 2
n+ 3 ; i = n

W ((xi)) =

 n+ 2 ; i = 1
2n ; i = 2
2n+ 2 ; i = n
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For n = 4 :

W ((yi)) =


n ; i = 1
n+ 3 ; i = 2
n+ 1 ; i = 3
n+ 2 ; i = n

W ((xi)) =

 n+ i ; i ≡ 1 mod 3
2n+ 3 ; i = 2
2n+ 2 ; i = 3

For n = 5 :

W ((yi)) =


n+ 1 ; i = 1
n+ 3 ; i = 2
n+ 4 ; i = 3
n+ 2 ; i = 4
n ; i = n

W ((xi)) =

 n+ 2i ; i ≡ 1 mod 3
3n− i− 1 ; i ≡ 2 mod 3
3n− 1 ; i = 3

For n = 6 :

W ((yi)) =



n ; i = 1
n+ 4 ; i = 2
n+ 5 ; i = 3
n+ 3 ; i = 4
n+ 1 ; i = 5
n+ 2 ; i = n

W ((xi)) =


n+ 1 ; i = 1
5n
2 ; i ≡ 2 mod 3
5n+4

2 ; i ≡ 0 mod 3
5n+2

2 ; i ≡ 1 mod 3
2n− 1 ; i = n

For n ≥ 7 ; n = 0 mod 6 :

W ((xi) =


5n−2

2 ; i ≡ 0 mod 3
5n+2

2 ; i ≡ 1 mod 3
5n
2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 1 mod 6 :

W ((xi) =


5n+3

2 ; i ≡ 0 mod 3
5n+1

2 ; i ≡ 1 mod 3
5n−1

2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 2 mod 6 :

W ((xi) =


5n+2

2 ; i ≡ 0 mod 3
5n+2

2 ; i ≡ 1 mod 3
5n−2

2 ; i ≡ 2 mod 3
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For n ≥ 7 ; n = 3 mod 6 :

W ((xi) =


5n−1

2 ; i ≡ 0 mod 3
5n−3

2 ; i ≡ 1 mod 3
5n+1

2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 4 mod 6 :

W ((xi) =


5n
2 ; i ≡ 0 mod 3
5n+4

2 ; i ≡ 1 mod 3
5n+2

2 ; i ≡ 2 mod 3

For n ≥ 7 ; n = 5 mod 6 :

W ((xi) =


5n+3

2 ; i ≡ 0 mod 3
5n+1

2 ; i ≡ 1 mod 3
5n−1

2 ; i ≡ 2 mod 3

For n = odd :

W (yi)) =

{
n+ 1 ; i = 1
n ; i = n

For n = even :

W (yi)) =

{
n ; i = 1
n+ 1 ; i = n− 1

For n is even and n ≥ 7 ; n = 0 mod 6:

W (yi)) =

 2n− i− 1 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 1 mod 6:

W (yi)) =

 2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is even and n ≥ 7 ; n = 2 mod 6:

W (yi)) =

 2n− i+ 1 ; i ≡ 0 mod 3
2n− i ; i ≡ 1 mod 3
2n− i− 1 ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 3 mod 6:

W (yi)) =

 2n− i ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3
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For n is even and n ≥ 7 ; n = 4 mod 6:

W (yi)) =

 2n− i ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3

For n is odd and n ≥ 7 ; n = 5 mod 6:

W (yi)) =

 2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

W ((y1)) =

{
n+ 1 ; for n = odd
2n− 1 ; for n = even

W ((yn)) =


2n− 1 ; for n = odd
5n−2

2 ; for n = even; n 6= 10
3n+4

2 ; n = 10

It is clear that f is local antimagic vertex dynamic coloring of (Cn,1). Finally, χla
r ≤

n+2 for n = 3 and χla
r ≤ n+ 3 for n ≥ 4. The proof is complete.

Theorem 2. Let G ∼= Mn be a sun graph {Mn} with n ≥ 3, χla
r (G) of {Mn} is :

χla
r ({Mn}) ≤

 2n ; 3 ≤ n ≤ 4
n+ 4 ; n = odd ; n = 5, 6
n+ 5 ; n = even ; n = 7

Proof. Sun graph is a connected graph with V(Mn) = {xi; yi; 1 ≤ i ≤ n} and E(Mn)
= {xiyi; 1 ≤ i ≤ n}

⋃
{xixi+1; 1 ≤ i ≤ n − 1}

⋃
{xixn; 1}. Then |V (Mn)| = 2n and

|E(Mn)| = 2n.
Define a bijection f : E(Mn) → {1,2,3,... |E(Mn)|} with the following function :

For n = 3 :

f((xixi+1)) =

 n+ 2 ; i ≡ 1
n+ 1; i = 2
2n ; i = 3

For n = 4 :

f((xixi+1)) =


2i−3n−14
−3 ; i ≡ 1 mod 3

n+ 3; i = 2
n+ 1 ; i = 3

For n = 5 :

f((xixi+1)) =


3n+2i+1

3 i ≡ 1 mod 3
3n+2i+2

3 i ≡ 2 mod 3
2n ; i = 3

For n = 6 :

f((xixi+1)) =

 n− i+ 7 i ≡ 1 mod 3
n− i+ 6 ; i ≡ 2 mod 3
n− i+ 8 ; i ≡ 0 mod 3
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For n is odd and n ≥ 7 ; n = 1 mod 6 :

f((xiyi)) =


n+ i; 1 ≤ i ≤ 2
2n− i+ 3 ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3
n+ i− 1 ; i = n

For n is odd and n ≥ 7 ; n = 5 mod 6:

f((xiyi)) =


n+ i; 1 ≤ i ≤ 2
2n− i+ 1 ; i ≡ 0 mod 3
2n− i+ 3 ; i ≡ 1 mod 3
2n− i+ 2 ; i ≡ 2 mod 3
n+ i ; i = n

For n is odd and n ≥ 7 ; n = 3 mod 6:

f((xiyi)) =


n+ i; 1 ≤ i ≤ 2
2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i+ 3 ; i ≡ 2 mod 3
n+ i ; i = n

For n is odd and n ≥ 7 :

f((xixi+1)) =

{
i+1
2 ; i = odd

n+i+1
2 ; i = even

For n is even and n ≥ 7 ; n = 0 mod 6:

f((xiyi)) =



2n− i− 1 ; i = 1
2n− i+ 1 ; i = 2
2n− i ; i ≡ 0 mod 3
2n− i− 1 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3
n+ i ; i = n

For n is even and n ≥ 7 ; n = 4 mod 6:

f((xiyi)) =



2n− i ; i = 1
2n− i− 1 ; i = 2
2n− i+ 1 ; i ≡ 0 mod 3
2n− i ; i ≡ 1 mod 3
2n− i− 1 ; i ≡ 2 mod 3
n+ i ; i = n



ICEGE 2018

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012115

IOP Publishing

doi:10.1088/1755-1315/243/1/012115

14

For n is even and n ≥ 7 ; n = 2 mod 6 :

f((xiyi)) =


2n− i ; 1 ≤ i ≤ 2
2n− i− 1 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n ≥ 7 :

f((xixi+1)) =


i+1
2 ;n = odd i ≡ odd

n+i+1
2 ;n = odd i ≡ even

i+1
2 ;n = even i ≡ odd

n+i
2 ;n = even i ≡ even

Hence f is a local antimagic labeling of Sun (Mn) and we have the vertex weighting
as follows :

For n = 0 mod 6 :

W (xi) =


5n
2 ; i ≡ 0 mod 3
5n−2

2 ; i ≡ 1 mod 3
5n+2

2 ; i ≡ 2 mod 3

For n = 1 mod 6 :

W (xi) =


5n+7

2 ; i ≡ 0 mod 3
5n+5

2 ; i ≡ 1 mod 3
5n+3

2 ; i ≡ 2 mod 3

For n = 2 mod 6 :

W (xi) =


5n−2

2 ; i ≡ 0 mod 3
5n+2

2 ; i ≡ 1 mod 3
5n
2 ; i ≡ 2 mod 3

For n = 3 mod 6 :

W (xi) =


5n+5

2 ; i ≡ 0 mod 3
5n+3

2 ; i ≡ 1 mod 3
5n+7

2 ; i ≡ 2 mod 3

For n = 4 mod 6 :

W (xi) =


5n+2

2 ; i ≡ 0 mod 3
5n
2 ; i ≡ 1 mod 3
5n−2

2 ; i ≡ 2 mod 3

For n = 5 mod 6 :

W (xi) =


5n+3

2 ; i ≡ 0 mod 3
5n+7

2 ; i ≡ 1 mod 3
5n−5

2 ; i ≡ 2 mod 3
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For n = even :

W (xi) =


3n− 1 ; i = 1
3n ; i = 2
5n−5

2 ; i ≡ 2 mod 3

For n = odd :

W (xi) =

{
3n+5

2 ; i = 1
3n+9

2 ; i = 2

For i ≡ n:

W (xi) =

{
7n
2 ; n = even
7n−1

2 ; n = odd

For n = 3 :

W (xi) =

 3n i = 1
2n+ 1 ; i = 2
3n− 1 ; i = 3

For n = 4 :

W (xi) =


3n+ 1 i = 1
3n− 1 ; i = 2
3n− 2 ; i = 3
3n ; i = 4

For n = 5 :

W (xi) =


2n i = 1
2n+ 2 ; i = 2
3n+ 1 ; i = 3
3n ; i = 4
2n ; i = 5

For n = 6 :

W (xi) =


3n+ 1 i = 1
5n
2 ; i ≡ 2 mod 3
5n+4

2 ; i ≡ 0 mod 3

For n ≥ 7 ; n = 1 mod 6 :

W (yj) =


n+ i; 1 ≤ i ≤ 2
2n− i+ 3 ; i ≡ 0 mod 3
2n− i+ 2 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3
n+ i− 1 ; i = n

For n ≥ 7 ; n = 5 mod 6:

W (yj) =


n+ i; 1 ≤ i ≤ 2
2n− i+ 1 ; i ≡ 0 mod 3
2n− i+ 3 ; i ≡ 1 mod 3
2n− i+ 2 ; i ≡ 2 mod 3
n+ i ; i = n
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For n ≥ 7 ; n = 3 mod 6:

W (yj) =


n+ i; 1 ≤ i ≤ 2
2n− i+ 2 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i+ 3 ; i ≡ 2 mod 3
n+ i ; i = n

For n is odd and n ≥ 7 :

W (yj) =

{
i+1
2 ; i = odd

n+i+1
2 ; i = even

For n ≥ 7 ; n = 0 mod 6:

W (yj) =



2n− i− 1 ; i = 1
2n− i+ 1 ; i = 2
2n− i ; i ≡ 0 mod 3
2n− i− 1 ; i ≡ 1 mod 3
2n− i+ 1 ; i ≡ 2 mod 3
n+ i ; i = n

For n ≥ 7 ; n = 4 mod 6:

W (yj) =



2n− i ; i = 1
2n− i− 1 ; i = 2
2n− i+ 1 ; i ≡ 0 mod 3
2n− i ; i ≡ 1 mod 3
2n− i− 1 ; i ≡ 2 mod 3
n+ i ; i = n

For n ≥ 7 ; n = 2 mod 6:

W (yj) =


2n− i ; 1 ≤ i ≤ 2
2n− i− 1 ; i ≡ 0 mod 3
2n− i+ 1 ; i ≡ 1 mod 3
2n− i ; i ≡ 2 mod 3

For n is odd and n ≥ 7 :

W (yj) =

{
i+1
2 ; i = odd

n+i
2 ; i = even

It is clear that f is local antimagic vertex dynamic coloring of (Mn). Finally, χla
r ≤

2n for 3 ≤ n ≤ 4 , χla
r ≤ n+4 for n = odd ; n = 6 and χla

r ≤ n + 5 for n ≥ 7 ; n
= even. The proof is complete.
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Theorem 3. Let G ∼= DBrn,m be a connected graph with n ≥ 3, χla
r (G) of DBrn,m is :

χla
r (DBrn,m) ≤

{
4m+n+3

2 ; n = odd; n ≥ 3
4m+n+2

2 ; n = even; n ≥ 3

Proof. DBrn,m is a connected graph with V(DBrn,m) = {xi; 1 ≤ i ≤ n}
⋃

{yj ; 1 ≤ j ≤ m}
⋃
{zk; 1 ≤ k ≤ m} and E(DBrn,m) = {x1yj ; 1 ≤ i ≤ m; 1 ≤ j ≤ m}

⋃
{xnzk; 1 ≤ i ≤ m; 1 ≤ j ≤ m}

⋃
{xixi+1; 1 ≤ i ≤ n − 1}. |V (DBrn,m)| = 2m+n and

|E(DBrn,m)| = 2m+n-1.
Case 1: Define a bijection f : E(DBrn,m = odd) → {1,2,3,... |E(DBrn,m)|} with the
following function :

For n = even ; 1 ≤ i ≤ n
2 :

f((xixi+1)) =

{
2i+ 6 ; i = even
2i+ 9 ; i = odd

For n = 1 mod 4 ; 1 ≤ i ≤ n+3
2 − 4 :

f((xixi+1)) =

{
2i+ 6 ; i = even
2i+ 9 ; i = odd

For n = 3 mod 4 ; 1 ≤ i ≤ n+3
2 − 3 :

f((xixi+1)) =

{
2i+ 6 ; i = even
2i+ 9 ; i = odd

For n = even ; n
2 + 1 ≤ n− 1 :

f((xixi+1)) =

{
2n− 2i+ 8 ; i = even
2n− 2i+ 7; i = odd

For n = 1 mod 4 ; n+5
2 ≤ n− 1 :

f((xixi+1)) =

{
2n− 2i+ 7 ; i = even
2n− 2i+ 8 ; i = odd

For n = 1 mod 4 ; n+3
2 − 3 ≤ n+1

2 :

f((xixi+1)) =

{
n+ 7 ; i = even
2i−5n−23
−4 ; i = odd

For n = 3 mod 4 ; n−1
2 ≤

n+3
2 :

f((xixi+1)) =

{
3n+2i+19

4 ; i = odd
n+ 7 ; i = even
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For m = odd ; yj ; 1 ≤ j ≤ m :

f((x1yj)) =

 2j − 1 ; j = odd
2j ; j = even
2n− 1 ; j = m

For m = odd ; zk ; 1 ≤ k ≤ m :

f((xnzk)) =

 2k ; k = odd
2k − 1 ; k = even
2m ; k = m

Hence f is a local antimagic labelling of DBrn,m and we have the vertex weight as
follows :

W ((xi) =

{
4i+ 9 ; for n = odd; 3 ≤ i ≤ n−3

2
n = even; 2 ≤ i ≤ n−2

2

W ((xi) =

{
4n− 4i+ 13 ; for n = odd; i ≥ n−1

2 + 3
n = even; i ≥ n−2

2 + 2

W ((xi) =



2n+ 6 ; for n = 1 mod 4 ; n 6= 5 ; i ≡ n+3
2

n = 3 mod 4 ; i ≡ n−1
2

2n+ 8 ; for n = 0 mod 4 ; i ≡ n
2 + 1

n = 1 mod 4 ; n 6= 5 ; i ≡ n−1
2

n = 1 mod 4 ; n 6= 5 ; i ≡ n+3
2

n = 2 mod 4 ; i ≡ n
2

n = 3 mod 4 ; i ≡ n−1
2

n = 3 mod 4 ; i ≡ n+3
2

2n+ 9 ; for n = 0 mod 4 ; i ≡ n
2

n = 1 mod 4 ; n 6= 5 ; i ≡ n
n = 2 mod 4 ; i ≡ n+2

2
n = 3 mod 4 ; i ≡ n+1

2

W ((x1)) =
{

8 +
∑
f(yj) ; for n ≥ 7 ; i ≡ 1

W ((xn)) =
{

7 +
∑
f(zk) ; for n ≥ 7 ; i ≡ n

W ((yj)) =

 2j − 1 ; j = odd
2j ; j = even
2n− 1 ; j = m

W ((zk)) =

 2k ; k = odd
2k − 1 ; k = even
2m ; k = m
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It is clear that f is local antimagic vertex dynamic coloring of DBrn,m. Finally, χla
r

≤ n+2 for n = 3 and χla
r ≤ n+ 3 for n ≥ 4.

Case 2: Define a bijection f : E(DBrn,m = even) → {1,2,3,... |E(Brn,m = even)|} with
the following function :

For n = even ; 1 ≤ i ≤ n
2 :

f((xixi+1)) =

{
2i+ 6 ; i = even
2i+ 9 ; i = odd

For n = 1 mod 4 ; 1 ≤ i ≤ n+3
2 − 4 :

f((xixi+1)) =

{
2i+ 6 ; i = even
2i+ 9 ; i = odd

For n = 3 mod 4 ; 1 ≤ i ≤ n+3
2 − 3 :

f((xixi+1)) =

{
2i+ 6 ; i = even
2i+ 9 ; i = odd

For n = even ; n
2 + 1 ≤ n− 1 :

f((xixi+1)) =

{
2n− 2i+ 8 ; i = even
2n− 2i+ 7; i = odd

For n = 1 mod 4 ; n+5
2 ≤ n− 1 :

f((xixi+1)) =

{
2n− 2i+ 7 ; i = even
2n− 2i+ 8 ; i = odd

For n = 1 mod 4 ; n+3
2 − 3 ≤ n+1

2 :

f((xixi+1)) =

{
n+ 7 ; i = even
2i−5n−23
−4 ; i = odd

For n = 3 mod 4 ; n−1
2 ≤

n+3
2 :

f((xixi+1)) =

{
3n+2i+19

4 ; i = odd
n+ 7 ; i = even

For m = even ; yj ; 1 ≤ j ≤ m :

f((x1yj)) =

{
2j − 1 ; j = odd
2j ; j = even

For m = odd ; zk ; 1 ≤ k ≤ m :

f((xnzk)) =

{
2k ; k = odd
2k − 1 ; k = even
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Hence f is a local antimagic labelling of DBrn,m and we have the vertex weight as
follows :

For n = 3 :

W ((xi) =

 10 +
∑
f(yj) ; i = 1; 1 ≤ j ≤ m

6n+ 1; i = 3
9 +

∑
f(zk) ; i =n ; 1 ≤ k ≤ p

For n = 4 :

W ((xi) =

{
5n+ 1; i = 2
7n+ 1; i = 3

For n = 5 :

W ((xi) =

 4n+ 3; i = 2
4n+ 2; i = 3
4n− 1; i = 4

For n > 5 :

W ((xi) =

{
4i+ 13; for n = odd; 1 ≤ i ≤ n−2

2
4i+ 13; for n = even; 1 ≤ i ≤ n

2 + 1

W ((xi) =

{
4n− 4i+ 17 ; for n

2 + 2 ≤ n
4n− 4i+ 17 ; for n+5

2 ≤ n

W ((xi) =



2n+ 11 ; for n = 0 mod 4 ; i ≡ n
2 + 1

2n+ 9 ; for n = 1 mod 4 ; i ≡ n−1
2

11n−6i+45
4 ; for n = 1 mod 4 ; i ≡ n+1

2−9n+2i−53
−4 ; for n = 1 mod 4 ; i ≡ n+1

2
−9n+2i−51

−4 ; for n = 1 mod 4 ; i ≡ n+3
2

2n+ 11; for n = 2 mod 4 ; i ≡ n
2

4n− 4i+ 17; for n = 2 mod 4 ; i ≡ n
2 + 1

−9n+2i−53
−4 ; for n = 3 mod 4 ; i ≡ n−1

2
7n+2i+47

4 ; for n = 3 mod 4 ; i ≡ n+1
2

W ((xi)) =
{

11 +
∑
f(yj) ; for n ≥ 4 ; i = 1

W ((xi)) =
{

9 +
∑
f(zk) ; for n ≥ 4 ; i = n

It is clear that f is local antimagic vertex dynamic coloring of (DBrn,m). Finally,
χla
r ≤ 4m+n+3

2 for n = odd and χla
r ≤ 4m+n+2

2 for n = even. The proof is complete.

Theorem 4. Let G ∼= Br{n,m} be a connected graph with n ≥ 3, χla
r (G) of Br{n,m} is :

χ(Br{n,m}) =


n+m ; 3 ≤n≤ 4
2m+n+5

2 ; n = odd
2m+n+4

2 ; n = 2 mod 4
2m+n+2

2 ; n = 0 mod 4
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Proof. Br{n,m} is a connected graph with V(Br{n,m}) = {xi; 1 ≤ i ≤ n}
⋃
{yj ; 1 ≤ i ≤

m} and E(Br{n,m}) ={xnyj ; 1 ≤ j ≤ m}
⋃
{xixi+1; 1 ≤ i ≤ n− 1}. Then |V (Br{n,m})|

= m+n and |E(Brn,m)| = m+n-1.
Define a bijection f : E(Br{n,m}) → {1 , 2, 3,..., |E(Br{n,m})|} with the following

function :

For n = 3 :

f((xixi+1)) =

{
n+ 2 ; i = 1
n+ 1 ; i = 2

For n = 4 :

f((xixi+1)) =

 n+ 2 ; i = 1
n+ 1 ; i = 2
n ; i = 3

For n = 5 :

f((xixi+1)) =


n+ 2 ; i = 1
n ; i = 2
n− 1 ; i = 3
n+ 1 ; i = 4

For n = 6 :

f((xixi+1)) =


n− 1 ; i ≡ 2
10− 2i ; 1 ≤ i ≤ n

2 ; i ≡ odd
n ; n

2 + 1 ≤ i ≤ n− 1 ; i ≡ 4
n+ 1 ; n

2 + 1 ≤ i ≤ n− 1 ; i ≡ n− 1

For n = 7 :

f((xixi+1)) =


12− 2i ; 1 ≤ i ≤ n+1

2 ; i ≡ even
11− 2i ; 1 ≤ i ≤ n+1

2 ; i ≡ odd
n ; n− 2 ≤ i ≤ n− 1 ; i = 5
n− 1 ; n− 2 ≤ i ≤ n− 1 ; i = 6

For n = 9 :

f((xixi+1)) =


14− 2i ; 1 ≤ i ≤ n−1

2 ; i ≡ even
13− 2i ; 1 ≤ i ≤ n−1

2 ; i ≡ odd
2i− 7 ; n+1

2 ≥ n− 1 ; i ≡ even
2i− 6 ; n+1

2 ≥ n− 1 ; i ≡ odd

For n = 0 mod 4 ; n = 2 mod 4 ; 1 ≤ i ≤ n
2 :

f((xixi+1)) =

{
n− 2i+ 4 ; i ≡ odd
n− 21 + 3 ; i ≡ even

For n = 1 mod 4 ; n = 3 mod 4 ; 1 ≤ i ≤ n+1
2 ; n 6= 9 :

f((xixi+1)) =

{
n− 2i+ 5 ; i ≡ even
n− 21 + 4 ; i ≡ odd
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For n = 0 mod 4 ; n = 2 mod 4 ; i
2 + 1 ≤ i ≤ n− 1 :

f((xixi+1)) =

{
n− 2i+ 4 ; i ≡ even
n− 21 + 3 ; i ≡ odd

For n = 1 mod 4 ; n−1
2 ≤ n− 1 ; n 6= 9 :

f((xixi+1)) =

{
2i− n+ 2 ; i ≡ even
21− n+ 3 ; i ≡ odd

For n = 3 mod 4 ; n−3
2 ≤ n− 1 ; n 6= 9 :

f((xixi+1)) =

{
2i− n+ 2 ; i ≡ even
21− n+ 3 ; i ≡ odd

For m ; yj ; 1 ≤ j ≤ m :

f((xn−1yj)) =
{

i ; 1 ≤ i ≤ m

Hence f is a local antimagic labelling of Br{n,m} and we have the vertex weight as
follows :

W ((xi)) =

{
2n− 4i+ 9 ; for n = odd; 1 ≤ i n−3

2
n = even; 1 ≤ i n−2

2 + 1

W ((xi)) =

{
4i− 2n+ 5 ; for n = odd ; n−1

2 ≤ n
n = even ; n

2 ≤ n

W ((xi)) =; for



2m+ 3 ; for n = 0 mod 4 ; i ≡ n
2 + 1

n 6= 13 ; n = 1 mod 4 ; i ≡ n+1
2

n ≥ 10 ; n = 2 mod 4 ; i ≡ n
2 + 1

n ≤ 11 ; n = 3 mod 4 ; i ≡ n
2 + 1

n = 13 ; i ≡ n−1
2

n = 15 ; i ≡ n+1
2

n = 15 ; i ≡ n+1
2 + 1

2m+ 4 ; n = 0 mod 4 ; i ≡ n+2
2

n 6= 13 ; n = 1 mod 4 ; i ≡ n−1
2

n ≥ 10 ; n = 2 mod 4 ; i ≡ n
2

n ≤ 11 ; n = 3 mod 4 ; i ≡ n−1
2

n = 13 ; i ≡ n+1
2

n = 15 ; i ≡ n+3
2 + 1

n = 15 ; i ≡ n+3
2

2m+ 6 ; for n 6= 13 ; n = 1 mod 4 ; i ≡ n+3
2

n = 15 ; i ≡ n−1
2 + 1

4m+ 1; for n = 15 ; i ≡ n+5
2 + 1
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W ((xi)) =
{

4m+ 1; for n = 15 ; i ≡ n+5
2 + 1

W ((xi)) =

 n+ 2 +
∑
f(yj) ; for n = even ; i ≡ n

n +
∑
f(yj) ; for n = 1 mod 4 ; n ≥ 4 ; i = n

n +
∑
f(yj) ; for n = 3 mod 4 ; n ≥ 4 ; i = n

It is clear that f is local antimagic vertex dynamic coloring of (Br{n,m}). Finally, χla
r

≤ n+m for 3 ≤ n ≤ 4 , χla
r ≤ 2m+n+5

2 for n = odd , χla
r ≤ 2m+n+4

2 for n = 2 mod 4 ,

and χla
r ≤ 2m+n+2

2 for n = 0 mod 4. The proof is complete.

3. Concluding Remarks
In this paper, we have found the exact value local antimagic dynamic chromatic number,
namely sun graph, caterpilar graph, broom graph and doublebroom graph.

Open Problem 1. Determine the local antimagic vertex dynamic coloring of operation
graphs?
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