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Abstract. Let G = (V,E) be a connected graph. A bijection function f : E(G) →
{1, 2, 3, · · · , E(G)|} is called a local antimagic labeling if for all uv ∈ E(G)s, w(u) 6= w(v),
where w(u) = Σe∈E(u)f(e). Such that, local antimagic labeling induces a proper vertex k-
coloring of graph G that the neighbors of any vertex u receive at least min{r, d(v)} different
colors. The local antimagic r-dynamic chromatic number, denoted by χla

r (G) is the minimum k
such that graph G has the local antimagic r-dynamic vertex k-coloring. In this paper, we will
present the basic results namely the upper bound of the local antimagic r-dynamic chromatic
number of some classes graph.

1. Introduction
In this paper, all graph is simple, connected and undirected, G = (V,E), on the vertex set V (G)
and the set E(G). For vertex, v of G is denoted by N(v) and the degree of v is denoted by
d(v). The maximum and minimum of graph G are denoted by ∆(G) and δ(G). Arumugam [4],
introduced the concept of local antimagic chromatic number of graphs. Then it is followed by
Albirri [2] which did some research of another graphs.

Definition 1.1 [4] Let G = (V (G), E(G) be a graph of order n and size m having no isolated
vertices. A bijection f : E(G) → {1, 2, 3, ...,m} is called a local antimagic labeling if for all
uv ∈ E(G) we have w(u) 6= w(v), where for w(u) = Σe∈E(u)f(e). A graph G is local antimagic
if G has a local antimagic labeling.

Montgomery [8] introduced the concept of r-dynamic coloring, definition of r-dynamic coloring
as follows,

Definition 1.2 [8] An r-dynamic coloring of a graph G is defined to be a map c from V to the
set of colors such that

• If uv ∈ E(G), then c(u) 6= c(v), and

• For each vertex v ∈ V (G), |c(N(v))| ≥ min{r, d(v)}.

The minimum k such that graph G with an r-dynamic k-coloring is called the r-dynamic
chromatic number of graph G, χr(G). This concept was introduced by Montgomery [8]. He
found lower bound of the r- dynamic chromatic number, χr(G) ≥ min{∆(G), r}+ 1.

In this paper, we introduce the new concept which the combination of local antimagic labeling
[4] and r-dynamic chromatic number [3]. The local antimagic labeling induces a proper vertex
k-coloring of graph G where the vertex v is assigned the color w(v) such that the neighbors of
any vertex v receive at least min{r, d(v)} different colors.
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Figure 1. (a) χla
r (P5) = 4 (b) χla

r (P9) = 6

2. Main Result
In the paper, we have the new concept which combine of local antimagic labeling and r-dynamic
chromatic number.

Definition 2.1 Let G = (V,E) be a graph of size m having no isolated vertices. A bijection
f : E(G)→ {1, 2, 3, · · · ,m} is called local antimagic r-dynamic coloring, such that:

• If uv ∈ E(G), then w(u) 6= w(v), where w(u) = Σe∈E(u)f(e) and

• For each vertex v ∈ V (G), |w(N(v))| ≥ min{r, d(v)}.

Definition 2.2 The local antimagic r-dynamic chromatic number of graph G, denoted by χla
r (G)

is the minimum k such that graph G has an local antimagic r-dynamic vertex k-coloring induced
by local antimagic labelings.

We find the lower bound of local antimagic rdynamic chromatic number of G. We get the
local antimagic r-dynamic chromatic number of some classes graphs namely path, cycle, path,
star, and complete.

Lemma 2.1 Let G be a connected graph with order at least 3, then local antimagic r-dynamis
chromatic number is χla

r (G) ≥ 2.

Theorem 2.1 Let Pn be a path graph with order n, for n ≥ 2 then local antimagic r-dynamic
chromatic number is

χla
r (Pn) ≤



3, if r = 1
4, if r ≥ 2 and n = 5
n, if r ≥ 2 and n = 3, 4
n+4
3 , if r ≥ 2 and n ≡ 5mod 6, n 6= 5

n+7
3 , if r ≥ 2 and n ≡ 2mod 6

n+8
3 , if r ≥ 2 and n ≡ 1mod 3, n 6= 4

n+9
3 , if r ≥ 2 and n ≡ 0mod 3, n 6= 3

Proof 2.1 Case 1: For n ≡ 5 mod 6, we define a bijection f : E(Pn) → {1, 2, 3, ..., n} as
follows

f(xixi+1) =


i+1
3 , if i ≡ 2 mod 3

2n−i−1
3 , if i ≡ 0 mod 3

2n+i−5
3 , if i ≡ 1 mod 3

n− 1, if i = 1
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From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =



2n−1
3 , if i ≡ 0 mod 3

4n−5
3 , if i ≡ 1 mod 3

2n+2i−5
3 , if i ≡ 2 mod 3

n− 1, if i = 1
n− 2, if i = n
n, if i = 2

From the weight of vertex xi in path Pn, we can see that for every two adjacent vertices have
distinct weight namely w(v) = n− 1, n, 2n−13 , 4n−53 , 2n+5

3 , 2n−13 , 4n−53 ,
2n+11

3 , 2n−13 , 4n−53 , 2n+17
3 , . . . , 2n−13 , 4n−53 , n − 2. Furthermore, it shows that every vertex has

|w(u)| ≥ min{r, d(u)}. We obtain that χla
r (Pn) ≤ n+4

3 .

Case 2: For n ≡ 2 mod 6, we define a bijection f : E(Pn)→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+1
3 , if i ≡ 2 mod 3

2n−i−1
3 , if i ≡ 0 mod 3

2n+i−5
3 , if i ≡ 1 mod 3

n− 1, if i = 1

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =



2n−1
3 , if i ≡ 0 mod 3

4n−5
3 , if i ≡ 1 mod 3

2n+2i−5
3 , if i ≡ 2 mod 3

n− 1, if i = 1
n− 2, if i = n
n, if i = 2

From the weight of vertex xi in path Pn, we can see that for every two adjacent vertices have
distinct weight namely w(v) = n− 1, n, 2n−13 , 4n−53 , 2n+5

3 , 2n−13 , 4n−53 ,
2n+11

3 , 2n−13 , 4n−53 , 2n+17
3 , . . . , 2n−13 , 4n−53 , n − 2. Furthermore, it shows that every vertex has

|w(u)| ≥ min{r, d(u)}. We obtain that χla
r (Pn) ≤ n+7

3 .
Case 3: For n ≡ 1 mod 3, we define a bijection f : E(Pn)→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+1
3 , if i ≡ 2 mod 3

2n−i+1
3 , if i ≡ 0 mod 3

2n+i−3
3 , if i ≡ 1 mod 3

n− 1, if i = 1

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =



2n+1
3 , if i ≡ 0 mod 3

4n−1
3 , if i ≡ 1 mod 3

2n+2i−3
3 , if i ≡ 2 mod 3

n− 1, if i = 1
n+2
3 , if i = n
n, if i = 2

From the weight of vertex xi in path Pn, we can see that for every two adjacent vertices have
distinct weight namely w(v) = n− 1, n, 2n−13 , 4n−53 , 2n+5

3 , 2n−13 , 4n−53 ,
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2n+11
3 , 2n−13 , 4n−53 , 2n+17

3 , . . . , 2n−13 , 4n−53 , n − 2. Furthermore, it shows that every vertex has

|w(u)| ≥ min{r, d(u)}. We obtain that χla
r (Pn) ≤ n+8

3 .
Case 4: For n ≡ 0 mod 3, we define a bijection f : E(Pn)→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+1
3 , if i ≡ 2 mod 3

2n−i
3 , if i ≡ 0 mod 3

2n+i−4
3 , if i ≡ 1 mod 3

n− 1, if i = 1

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =



2n
3 , if i ≡ 0 mod 3
4n−3

3 , if i ≡ 1 mod 3
2n+2i−4

3 , if i ≡ 2 mod 3
n− 1, if i = 1
n
3 , if i = n
n, if i = 2

From the weight of vertex xi in path Pn, we can see that for every two adjacent vertices have
distinct weight namely w(v) = n− 1, n, 2n−13 , 4n−53 , 2n+5

3 , 2n−13 , 4n−53 ,
2n+11

3 , 2n−13 , 4n−53 , 2n+17
3 , . . . , 2n−13 , 4n−53 , n − 2. Furthermore, it shows that every vertex has

|w(u)| ≥ min{r, d(u)}. We obtain that χla
r (Pn) ≤ n+9

3 .

Case 5: For n = 5, we define a bijection f : E(P5) → {1, 2, 3, ..., 4}. We have edge label of
path P5, f(e) : 1, 3, 2, 4 and vertex weight w(v) : 1, 4, 5, 6, 4. Based on the vertex weight that for
any two adjacent vertices have distict weight and satisfy |w(u)| ≥ min{r, d(u)}. Such that, we
obtain that χla

2 (P5) ≤ 4.
Case 6: For n = 3, 4, we define a bijection f : E(Pn) → {1, ..., n − 1}. We have edge label of
path P3, f(e) : 1, 2 and vertex weight w(v) : 1, 3, 2. We have edge label of path P4, f(e) : 1, 3, 2
and vertex weight w(v) : 1, 4, 5, 2. Hence, we obtain that χla

r (Pn) ≤ n.
The proof is complete.

Theorem 2.2 Let Cn be a cycle graph with order n, for n ≥ 3 then local antimagic r-dynamic
chromatic number is

χla
r (Cn) ≤


3, if r = 1
n, if r ≥ 2 and n = 3, 4, 5
dn3 e+ 2, if r ≥ 2 and n ≡ 1, 2, 3mod 6
dn3 e+ 1, if r ≥ 2 and n ≡ 0, 4, 5mod 6

Proof 2.2 For r = 1 in [4], χla(Cn) = χla
1 (Cn) = 3. For r ≥ 2, we divide into some cases as

follows.
Case 1: For n ≡ 1 mod 6, we define a bijection f : E(Cn) −→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+2
3 , if i ≡ 1 mod 3

2n−i
3 , if i ≡ 2 mod 3

2n+i−2
3 , if i ≡ 0 mod 3

n, if i = n

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =



2n+1
3 , if i ≡ 2 mod 3

4n−1
3 , if i ≡ 0 mod 3

2n+2i−5
3 , if i ≡ 1 mod 3

n+ 1, if i = 1
2n− 1, if i = n
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From the weight of vertex xi in cycle Cn, we can see that for every two adjacent vertices have
distinct weight namely w(v) = n+ 1, 2n+1

3 , 4n−13 , 2n+3
3 , 2n+1

3 , 4n−13 ,
2n+9

3 , 2n+1
3 , 4n−13 , 2n+15

3 , . . . , 2n+1
3 , 4n−13 , 2n − 1. Furthermore, it shows that every vertex has

|w(u)| ≥ min{r, d(u)}. We obtain that χla
r (Cn) ≤ n+8

3 .
Case 2: For n ≡ 2 mod 6, we define a bijection f : E(Cn) −→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+2
3 , if i ≡ 1 mod 3

2n−i+1
3 , if i ≡ 2 mod 3

2n+i−1
3 , if i ≡ 0 mod 3

n, if i = n

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =


2n+2

3 , if i ≡ 2 mod 3
4n+1

3 , if i ≡ 0 mod 3
2n+2i

3 , if i ≡ 1 mod 3
n+ 1, if i = 1

From the weight of vertex xi in cycle Cn, we can see that for every two adjacent vertices have
distinct weight namely w(v) = n+ 1, 2n+2

3 , 4n+1
3 , 2n+8

3 , 2n+2
3 , 4n+1

3 ,
2n+14

3 , 2n+2
3 , 4n+1

3 , 2n+20
3 , . . . , 2n+2

3 , 4n+1
3 . Furthermore, it shows that every vertex has |w(u)| ≥

min{r, d(u)}. We obtain that χla
r (Cn) ≤ n+7

3 .
Case 3: For n ≡ 3 mod 6, we define a bijection f : E(Cn) −→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+2
3 , if i ≡ 1 mod 3

2n−i+2
3 , if i ≡ 2 mod 3

2n+i
3 , if i ≡ 0 mod 3

n, if i = n

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =


2n+3

3 , if i ≡ 2 mod 3
4n+3

3 , if i ≡ 0 mod 3
2n+2i+1

3 , if i ≡ 1 mod 3
n+ 1, if i = 1

From the weight of vertex xi in cycle Cn, we can see that for every two adjacent vertices have
distinct weight namely w(v);n+ 1, 2n+3

3 , 4n+3
3 , 2n+9

3 , 2n+3
3 , 4n+3

3 ,
2n+15

3 , 2n+3
3 , 4n+3

3 , 2n+21
3 , . . . , 2n+3

3 , 4n+3
3 . Furthermore, it shows that every vertex has |w(u)| ≥

min{r, d(u)}. We obtain that χla
r (Cn) ≤ n+6

3 .
Case 4: For n ≡ 4 mod 6, we define a bijection f : E(Cn) −→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+2
3 , if i ≡ 1 mod 3

2n−i
3 , if i ≡ 2 mod 3

2n+i−2
3 , if i ≡ 0 mod 3

n, if i = n

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =



2n+1
3 , if i ≡ 2 mod 3

4n−1
3 , if i ≡ 0 mod 3

2n+2i−1
3 , if i ≡ 1 mod 3

n+ 1, if i = 1
2n− 1, if i = n



ICEGE 2018

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077

IOP Publishing

doi:10.1088/1755-1315/243/1/012077

6

From the weight of vertex xi in cycle Cn, we can see that for every two adjacent vertices have
distinct weight namely w(v) = n+ 1, 2n+1

3 , 4n−13 , 2n+7
3 , 2n+1

3 , 4n−13 ,
2n+13

3 , 2n+1
3 , 4n−13 , 2n+19

3 , . . . , 2n+1
3 , 4n−13 , 2n − 1. Furthermore, it shows that every vertex has

|w(u)| ≥ min{r, d(u)}. We obtain that χla
r (Cn) ≤ n+5

3 .
Case 5: For n ≡ 5 mod 6, we define a bijection f : E(Cn)→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+2
3 , if i ≡ 1 mod 3

2n−i+2
3 , if i ≡ 2 mod 3

2n+i−1
3 , if i ≡ 0 mod 3

n, if i = n

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =


2n+2

3 , if i ≡ 2 mod 3
4n+1

3 , if i ≡ 0 mod 3
2n+2i

3 , if i ≡ 1 mod 3
n+ 1, if i = 1

From the weight of vertex xi in cycle Cn, we can see that for every two adjacent vertices have
distinct weight namely w(v) = n+ 1, 2n+2

3 , 4n+1
3 , 2n+8

3 , 2n+2
3 , 4n+1

3 ,
2n+14

3 , 2n+2
3 , 4n+1

3 , 2n+20
3 , . . . , 2n+2

3 , 4n+1
3 . Furthermore, it shows that every vertex has |w(u)| ≥

min{r, d(u)}. We obtain that χla
r (Cn) ≤ n+4

3 .
Case 6: For n ≡ 0 mod 6, we define a bijection f : E(Cn)→ {1, 2, 3, ..., n} as follows

f(xixi+1) =


i+2
3 , if i ≡ 1 mod 3

2n−i+2
3 , if i ≡ 2 mod 3

2n+i
3 , if i ≡ 0 mod 3

From the labels f , we obtain the vertex weight w(u) = Σe∈E(u)f(e) as follows.

w(xi) =


2n+3

3 , if i ≡ 2 mod 3
4n+3

3 , if i ≡ 0 mod 3
2n+2i+1

3 , if i ≡ 1 mod 3
n+ 1, if i = 1

From the weight of vertex xi in cycle Cn, we can see that for every two adjacent vertices have
distinct weight namely w(v);n+ 1, 2n+3

3 , 4n+3
3 , 2n+9

3 , 2n+3
3 , 4n+3

3 ,
2n+15

3 , 2n+3
3 , 4n+3

3 , 2n+21
3 , . . . , 2n+3

3 , 4n+3
3 . Furthermore, it shows that every vertex has |w(u)| ≥

min{r, d(u)}. We obtain that χla
r (Cn) ≤ n+3

3 .
Case 7: For n = 3, 4, 5, Define a bijection f : E(Cn) → {1, 2, 3, ..., n}. We have edge label of
cycle Cn as follows

• We have edge label of cycle C3, f(e) : 1, 2, 3 and vertex weight w(v) : 4, 3, 5

• We have edge label of cycle C4, f(e) : 1, 3, 4, 2 and vertex weight w(v) : 3, 4, 7, 6

• We have edge label of cycle C5, f(e) : 1, 3, 5, 2, 4 and vertex weight w(v) : 5, 4, 8, 7, 6

Hence, we obtain that χla
r (Cn) ≤ n.

From Case 1-7, we obtain that for n ≡ 1, 2, 3 (mod 6), χla
r (Cn) ≤ dn3 e + 2 and for n ≡ 0, 4, 5

(mod 6), χla
r (Cn) ≤ dn3 e+ 1. The proof is complete.

Theorem 2.3 Let Sn be a star graph with order n+1, for n ≥ 3 then local antimagic r-dynamic
chromatic number is χla

r (Sn) = n+ 1.
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Figure 2. χla
r (S9) = 10

Proof 2.3 Consider the star graph, Sn with central vertex v0, d(v0) = n and vertices vi, d(vi) =
1, 1 ≤ i ≤ n. The order of star graph is n+ 1 and the size of star graph is |E(Sn)| = n, namely
ei = v0vi, 1 ≤ i ≤ n. Define a bijection f : E(Sn) → {1, 2, 3, ..., n} as, f(ei) = i, 1 ≤ i ≤ n
such that w(v0) = Σk=1k, 1 ≤ k ≤ n and w(vi) = i, 1 ≤ i ≤ n. Hence, it shows
|w(N(v0))| = n ≥ min{r, d(v0)} and |w(N(vi))| = 1 ≥ min{r, d(vi)}. We obtain that
χla
r (Sn) = n+ 1.

Theorem 2.4 Let Kn be a complete graph with order n, for n ≥ 3 then local antimagic r-
dynamic chromatic number is χla

r (Kn) = n.

Proof 2.4 Consider the complete graph, Kn vertices vi, d(vi) = n − 1, 1 ≤ i ≤ n. The

order of complete graph is n and the size of star graph is |E(Kn)| = n(n−1)
2 , namely ej =

vivi+k, 1 ≤ i ≤ n, 1 ≤ k ≤ n − i. Define a bijection f : E(Kn) → {1, 2, 3, ..., n(n−1)2 } as,

f(ej) = j, 1 ≤ j ≤ n(n−1)
2 such that w(v) 6= w(u) every e = uv, e ∈ E(Kn). Hence, for every

v ∈ V (G), it shows |w(N(v))| = n− 1 ≥ min{r, d(v)}. We obtain that χla
r (Kn) = n.

3. Conclusion
We have found the concept local antimagic r-dynamic coloring. We find the basic results namely
the upper bound of the local antimagic r-dynamic chromatic number of some classes graph,
namely path, cycle, star, and complete graph

Acknowledgement
We gratefully acknowledge the support from University of Airlangga, Surabaya and CGANT
University of Jember Indonesian of year 2018.

References
[1] Agustin I H, Hasan M, Dafik, Alfarisi R, Kristiana A I and Prihandini R M 2018 Local edge antimagic coloring

of comb product of graph Journal of Physics: Conf. Series Vol. 1008
[2] Albirri E R, Dafik, Slamin, Agustin I H, and Alfarisi R 2018 On the local edge antimagicness of m-splitting

graphs Journal of Physics: Conf. Series Vol 1008 012044



ICEGE 2018

IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077

IOP Publishing

doi:10.1088/1755-1315/243/1/012077

8

[3] Alfarisi R, Dafik, Kristiana A I, Albirri E R, and Agustin I H 2018 Non-isolated resolving number of graphs
with homogeneous pendant edges AIP Conference Proceeding 020012

[4] Arumugam S, Premalatha K, Baca M and Semanicova-Fenovcikova A 2017 Local Antimagic Vertex Coloring
of a Graph Graphs and Combinatorics Vol.33 275-285.

[5] Kristiana A I, Utoyo M I, Dafik 2018 On the r-dynamic chromatic number of the corronation by complete
graph Journal of Physics: Conf. Series Vol.1008 012033.

[6] Kristiana A I, Utoyo M I, Dafik 2018 The lower bound of the r-dynamic chromatic number of corona product
by wheel graphs AIP Conference Proceedings Vol.2014 020054.

[7] Lai H J and Montgomery B 2002 Dynamic coloring of graph Departement of Mathematics West Virginia
University

[8] Montgomery B 2001 Dynamic coloring of graphs West Virginia University


