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Abstract. Aiming the problem that the accuracy of current building energy consumption 
prediction method depends heavily on environmental parameters (air temperature, air pressure, 
humidity, etc.), a short-term prediction model of time series building energy consumption 
based on Chaos-BP is proposed. Firstly, the optimal delay time and embedding dimension of 
data samples are obtained by CC method. And the small data amount method is used to prove 
that the building energy consumption has chaotic characteristics. Secondly, the input structure 
of BP neural network is determined by phase space reconstruction, and again the middle school 
building is the research object. Finally, the Matlab software is used as the simulation tool to 
simulate the Chaos-BP prediction model and the BP prediction model respectively. The 
experimental results show that the building energy consumption has chaotic characteristics. 
Compared with the BP neural network prediction model, the Chaos-BP model can accurately 
predict the building energy consumption and provide a scientific basis for the development of 
building energy conservation work.  

1. Introduction 
At present, the prediction methods of common building energy consumption can be divided into three 
categories: 1. Building energy consumption prediction methods based on building energy simulation 
software, such as DeST, TRNSYS, Energyplus, etc. Although the prediction method is more accurate, 
it requires detailed meteorological parameters and enclosure parameters, and the modeling is 
complicated. 2. Building energy consumption prediction methods based on statistical theory, such as 
regression analysis and prediction method[2], time series prediction method[3], grey theory prediction 
method[4], etc. Although this method has strong theoretical support, the predictive model is less 
generalized. 3. Machine learning based energy consumption prediction methods, such as support 
vector machine prediction method[5], artificial neural network prediction method[6]and combined 
prediction method, etc. This kind of prediction method has been widely studied because of its high 
prediction accuracy and good generalization of the model. The combined prediction method mainly 
improves the accuracy of the original prediction model by reducing the input dimensions of the model 
(such as PCA, AHP) and optimizing the model parameters (such as GA, PSO), such as GA-BP, 
PSO-BP, Chaos-BP, etc. The Chaos-BP prediction model does not need to make any assumptions, and 
only predicts a certain moment in the future based on the time series of historical data, which can 
avoid human subjectivity. Combined with the good nonlinear approximation ability and fault tolerance 
of BP neural network, the most important thing is the ability to self-learn[7]. Combining the two 
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methods not only considers the complex characteristics of the prediction object, but also compensates 
for the shortcomings of the chaotic time series prediction model. 

This model has not been applied to the prediction of building energy consumption. Therefore, this 
paper will introduce the Chaos-BP prediction model to predict the energy consumption of buildings 
and the specific building energy consumption data are used for simulation experiments. 

2. Chaos-BP building energy consumption time series prediction model 
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Figure 1. Construction of Chaos-BP Building Energy Consumption Time Series Prediction Model 

The neural network model[8]does not require a priori information, has a high degree of self-learning, 
self-adaptation and fault tolerance. It can be approximated by arbitrary precision for nonlinear 
functions, and is very suitable for complex nonlinear systems, which can better reflect the chaotic 
characteristics of the system. The combination of BP neural network and chaos theory overcomes the 
disadvantage that chaos prediction model has no self-learning ability and improves the prediction 
accuracy. The basis of chaotic time series prediction is phase space reconstruction theory[9]. The 
phase space reconstruction is used to find the hidden law of chaotic attractors. Therefore, the model 
prediction based on Chaos-BP for building energy chaotic time series mainly includes phase space 
reconstruction. The three parts of chaotic characteristic discrimination and building energy 
consumption time series prediction are shown in Figure 1. 

2.1 Building energy consumption time series phase space reconstruction 
Firstly, phase space reconstruction of building energy consumption time series requires taking two 
parameters of embedding dimension m and delay timeτ . At present, methods for obtaining embedded 
dimensions include pseudo nearest neighbor method, Cao's method, and saturated correlation 
dimension method (GP algorithm); The methods for obtaining the delay time include  autocorrelation 
function method, average displacement method, and mutual information method[10]. Studies have 
shown[11]that the main factors affecting the quality of reconstructed phase space are not only the 
choice of delay timeτ and embedding dimension m , but more important is the determination of the 
embedded window width that combinesτ and m . The C-C method[12]forms a statistic by correlating 
the integrals of the sequence, and simultaneously calculatesτ and wτ by the relationship diagram of the 
statistic and the delay time, and then finds the embedding dimension according to ττω )1( −= m . The 
method can effectively reduce the calculation amount of the mutual information method and maintain 
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the nonlinear characteristics of the time series. Therefore, the C-C method is used to obtain the delay 
time and embedding dimension. 

Calculate the following three statistics: 
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When )(tSΔ minimum value is obtained for the first time, the corresponding delay time isτ , and 
the minimum value obtained by )(tScor corresponds to the embedded wide window wτ . 

2.2 Identification of chaotic characteristics of building energy consumption 
The premise of chaotic time series prediction is to judge the chaotic characteristics of building energy 
consumption time series[13]. A chaotic system with one or more positive values in its Lyapunov 
exponent spectrum can affirm the existence of chaotic properties[14]. In this paper, the maximum 
Lyapunov exponent is calculated by the small data method. The small data method is a method for 
improving the Wolf method based on the track-tracking method[15]in 1993 by Rosenstein et al. The 
method can make full use of all the data that can be utilized, is relatively reliable for small data sets, 
has a small amount of calculation, is relatively easy to operate, and has high precision of calculation 
results. 

For each point )(tYm in the phase space, calculate the distance after i discrete time steps of the pair 
of neighborhood points: 

)ˆ,min(,...,2,1,)ˆ()()( tNtNiitYitYiL mmt −−=+−+=          （4） 

Find the )(ln iLt average )(iy of all t for each i : 
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Where q is the number of non-zero )(iLt ， tΔ is the sample period, and a )(iy regression line is 
made by least squares, and the maximum Lyapunov exponent is the slope of the line. 

The flow chart of the small data volume method is shown in Figure 2: 
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Figure 2. Small data volume method flow chart 

2.3 Establishing a Chaos-BP Time Series Prediction Model 
The establishment and prediction process of Chaos-BP model is as follows: 

Normalize the original data, use the first N data of the sample, perform phase space reconstruction, 
get the best embedding dimension m , delay timeτ , and the m -dimensional phase number of the 
reconstructed phase space is τ)1( −−= mNM ; 

Constructing a prediction model and using the ( )1−× Nm vector matrix in the reconstructed phase 
space as training data; 
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The minimum error of setting the training target is 0.001, the training times are n , the momentum 
factor is 0.9, and the learning rate is 0.05; 

Perform network loop learning to correct the output and weight of the BP neural network until the 
error control is within the allowable range or the number of iterations reaches the upper limit, and the 
training ends. 

TheQ data points after the first N data are sampled as prediction data, and the model is predicted. 
The output value of the network is the predicted value, and the predicted value is inversely normalized 
to obtain the predicted actual value. 

3. Building energy consumption data collection 
This paper uses the building energy consumption data of a middle school in Hefei as the research 
object. The main target of collection is building electricity consumption. The collected indicators are 
mainly divided into four categories: lighting socket, air conditioning power, power consumption and 
special power[16]. 

Through the energy consumption monitoring platform of a middle school in Hefei, the hourly 
electricity consumption from 0:00 on November 22, 2017 to 23 o'clock on December 31, 2017 was 
collected, and 700 groups of continuous time were randomly selected as sample data, and the trend of 
energy consumption changes is shown in Figure 3. 

4. Experimental process and results 
In order to verify the prediction effect of Chaos-BP building energy consumption time series 
prediction model, this paper uses matlab2016a as the simulation experiment platform to achieve the 
above process. 

4.1 Determination of parameters 
In this paper, the C-C method is used to obtain the delay time and embedded window width of the 
building energy consumption data of a middle school in Hefei. The C-C method obtains the statistics 
as shown in Figure 4. The delay time corresponding to the first zero of )(tS or the minimum value 
obtained by )(tSΔ for the first time is the optimal delay time 4=τ . The delay time corresponding to 
the minimum value of )(tScor is the optimal window width 8=wτ , and the embedding 
dimension 3≈m can be obtained according to the embedding time window width formula 

ττ )1( −= mw . 

Figure 3. Building energy consumption data of 
a middle school in Hefei 

Figure 4. C-C method for reconstructing the time  
series statistics of building energy consumption 
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4.2 Proof of chaotic characteristics 
This paper uses the small data method to obtain the largest Lyapunov exponent of the building. The 
least squares fitting straight line of the building energy consumption time series is shown in Figure 5. 
According to its slope, the maximum Lyapunov value is 0.0832, which proves the existence of chaotic 
characteristics in building energy consumption. 

4.3 Chaos-BP building energy consumption time series forecast results 
The Chaos-BP time series prediction model is established. Firstly, the first 500 data points of the 
sample data are selected for phase space reconstruction, and the model is trained after reconstruction. 
The training results of the Chaos-BP model are shown in Figure 6 and Figure 7. It can be seen from 
Figure 6 that the goodness of fit of the model is 0.9807, and the fitting result is shown in Figure 7. The 
RMSE = 0.7892, and the fitting effect is good. 

 
Figure 5. Least Squares Fitting Line Figure 6. Chaos-BP model training fit Figure 

  
Figure 7. Chaos-BP model training fit value and 

measured value comparison 
Figure 8. Comparison of predicted and 
measured values of Chaos-BP model 

The last 200 data points in the sample data are selected as the prediction data, and the established 
Chaos-BP building energy consumption time series prediction model is used to realize the single-step 
prediction of building energy consumption. The comparison between the predicted value of building 
energy consumption and the measured value is compared as shown in Figure 8. The root mean square 
error RMSE between the predicted and measured values is 0.9630. It can be seen that the error is small 
when the short-term prediction is performed, and the prediction effect is good. 
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4.4 Comparison of BP and Chaos-BP model prediction results 
The BP neural network prediction model is constructed, and the first 500 data points of the sample 
data are used for model training. The fitting degree of the BP neural network model is 0.9901, and the 
fitting effect is good. The next 200 data points are selected for prediction. The comparison between the 
predicted results and the predicted results of the Chaos-BP model is shown in Figure 9. It can be 
known that the root mean square error of the BP neural network model is RMSE=1.7433. Compared 
with the prediction results of the Chaos-BP model, the prediction accuracy is lower and the robustness 
is poor. 

 
Figure 9. Comparison of predicted and measured values of BP and Chaos-BP models 

In order to more accurately evaluate and compare the prediction effects of the two models, this 
paper evaluates the prediction model by calculating the iteration time and Mean Absolute Percentage 
Error(MAPE), Root Mean Square Error (RMSE) and Sum of Squared Error(SSE). The results are 
shown in Table 1: 

Table 1. Comparison of BP and Chaos-BP prediction models 
Model Number of iterations Time/s MAPE RMSE SSE 

 600 9.9192 0.0421 1.0210 114.2342 
Chaos-BP 800 10.2696 0.0382 0.9630 94.6704 
 1000 10.5239 0.0379 0.9239 78.1789 
 600 8.7572 0.1247 2.0244 223.8481 
BP 800 11.4257 0.1120 1.7433 191.0609 

 1000 14.9531 0.1118 1.5084 152.4291 
It can be seen from Table 1 that the prediction accuracy of the Chaos-BP model is significantly 

higher than that of the BP neural network model with the same number of iterations. The results show 
that the convergence speed of the Chaos-BP model is significantly faster, which greatly shortens the 
iteration time and improves the prediction accuracy. 

5. Conclusions and prospects 
At present, the prediction methods for building energy consumption, such as multiple linear regression, 
artificial neural network, grey theory, time series, etc., need to consider external factors such as 
meteorological parameters and human subjective factors. Based on the chaotic characteristics of time 
series, a time series prediction model of building energy consumption based on Chaos-BP is 
proposed.Through the model test, the following conclusions were obtained: 



4th International Conference on Energy Equipment Science and Engineering

IOP Conf. Series: Earth and Environmental Science 242 (2019) 062037

IOP Publishing

doi:10.1088/1755-1315/242/6/062037

7

The C-C method is used to reconstruct the energy consumption data in phase space, and the 
Lyapunov exponent is calculated to prove the chaotic characteristics of building energy consumption. 

The Chaos-BP prediction model is used to predict the building energy consumption data in a 
short-term and compare with the BP neural network model prediction results. The results show that the 
prediction accuracy of the Chaos-BP prediction model is significantly higher than that of the BP 
neural network model. With the increase of the number of iterations, the training time of the Chaos-BP 
prediction model is significantly shorter than the BP prediction model. 

Because the Chaos-BP prediction model has a good predictive effect on building energy 
consumption, the future can not only provide data support for building energy efficiency improvement, 
but also provide sufficient decision-making basis for building energy conservation work. 
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