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Abstract A reduced scale model of a low specific speed pump-turbine with 7 runner blades and 
20 guide vanes is experimentally and numerically investigated. Main goal is to identify the onset, 
origin, and development of flow instabilities. The four-quadrant characteristic of the pump-
turbine is experimentally determined. The focus of this paper is on the turbine mode operation 
at off-design conditions involving runaway and the "S-shape" turbine characteristic. 3D, 
unsteady numerical simulations are performed using the CFD codes ANSYS-CFX and an in-
house code. The computational domain includes the entire flow passage from the spiral casing 
inlet to the draft tube exit. For turbulence modeling the SST k-ω, standard k-ε, and BSL EARSM 
models are applied. The numerical results at two guide vane openings (20° and 6°) and different 
operating points at each guide vane opening are compared to the experimental results. The 
comparisons between the CFD predictions and experimental data shows that the CFD predictions 
of all turbulence models are in good agreement with the experimental data for 20° guide vane 
opening whereas for the 6° guide vane opening, which is critical for the synchronization, only 
the k-ε and BSL EARSM turbulence models are showing a reasonable agreement with the 
experimental data. Based on the detailed analysis of the experimental data and CFD results 
focusing especially on the flow features in the vaneless space and at the runner inlet, the onset 
and development of the flow instabilities are explored.  

1.  Introduction 
Reversible pump-turbines add versatility to the electricity market because they can be switched between 
pump and turbine operations within a short time. In turbine mode, they are used to cover the peak energy 
demand and in pump mode they store the excess energy. Accordingly, reversible pump-turbines allow 
more flexibility and stabilization of the power grid. Due to the increased production of renewable energy 
such as wind and solar energy, balancing the energy supply and demand becomes more difficult. Thus, 
pump-turbines are gaining additional importance for energy storage, grid regulation, and peak energy 
production. In order to balance the changes in electricity production and consumption, pump-turbines 
need to switch quickly between pump and turbine modes with extended operation under off-design 
conditions. 

The emphasis on the design of the more sensitive pump flow however often leads by pump-turbines 
to stability problems in speed-no-load or turbine brake operations. This results from unstable pump-
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turbine characteristics that are responsible for oscillation in hydraulic systems. For reversible pump-
turbines, the characteristic curves exhibit an S-shape in the turbine, turbine brake and reverse pump 
regions. Pump-turbines are synchronized with the electrical grid at speed no load, a procedure which 
will be delayed in case of system oscillations excited by the unstable behavior of the pump-turbine at 
runaway. The consequences are high mechanical stresses and longer switching times or even a complete 
inability to synchronize the pump-turbine with the power grid. Another critical operation is the load 
rejection where within short time, the operating point of the turbine moves from full load to no load and 
may overshoot to turbine brake in the case that the guide vanes and inlet valves do not close rapidly. If 
the pump-turbine characteristic is unstable in this range, low frequency system oscillations may arise, 
which might damage the hydraulic system elements. The requirements of a stable and reliable pump-
turbine operation under continuously expanding operating ranges challenges the hydraulic design and 
requires new developments. The reason for the instability is related to complex flow patterns in the 
pump-turbine, but the details of the stability onset and development are not yet fully understood. 
Previous research at the Lucerne University of Applied Sciences (HSLU) analyzed the instabilities of a 
medium specific speed pump turbine and the unstable characteristics were correlated with vortices 
forming in the runner channel close to the leading edge [1]. 

The focus of this research is in the prediction of the pump-turbine characteristics and the explanation 
of the physical phenomena that are intrinsic to pump-turbine instability (prediction and detection of the 
onset of instabilities, determination of their origin, and understanding their development) by applying 
CFD simulations. The goal is not only enhancing the operating range of pump-turbines beyond the 
current stability limits, but also allowing establishment of design guidelines for stable pump-turbine 
designs based on the newly obtained knowledge of the cause of pump-turbine instabilities. Achieving 
these goals require a CFD methodology, which can adequately predict the characteristics and flow 
features of pump-turbines especially at off-design conditions. 

An accurate numerical prediction of pump-turbine instabilities becomes crucial and numerical 
accuracy plays a major role in modern pump turbine design in order to analyze and understand the 
mechanisms leading to the flow instabilities. It is advantageous to determine onset and intensity of the 
instabilities in the S-region properly before proceeding with the model tests. This study aims at 
predicting the S-shaped characteristics of a pump-turbine by using different numerical approaches, 
especially applying different turbulence modes. CFD (Computational Fluid Dynamics) simulations of a 
low specific speed reversible pump-turbine operating at design and off-design conditions are performed 
using an in-house CFD tool (a modified version of OpenFOAM) and the commercial code ANSYS 
CFX. The results of CFD simulations are compared with the experimental data obtained from the 
measurements at the same institution. 

2.  Speed no load instability: The S-shaped characteristics in the turbine mode 
The operating point (OP) of a pump-turbine in turbine mode switches back and forth between turbine 
(brake) and reverse pump modes, if the characteristics in this speed no load region has an S-shape. Such 
an S-shaped characteristic is depicted in Figure 1. For the occurrence of instabilities is the slope of the 
characteristics crucial. A positive slope of dKcm1/dKu1 > 0 and dKm1/dKu1 > 0 indicates an unstable 
branch in characteristics. 

The definitions of the dimensionless Ku1, Kcm1 and Km1 coefficients are: 

𝐾𝐾𝐾𝐾1 =
𝜋𝜋𝜋𝜋𝐷𝐷1

60�2𝑔𝑔𝑔𝑔
 ;  𝐾𝐾𝐾𝐾𝐾𝐾1 =

4𝑄𝑄
𝜋𝜋𝐷𝐷12�2𝑔𝑔𝑔𝑔

 ;  𝐾𝐾𝐾𝐾1 =
8𝑀𝑀

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝐷𝐷13
 

• n = rotational speed of the pump-turbine [rpm] 
• D1 = runner diameter [m] 
• g = 9.81 [m/s2] (gravity acceleration) 
• Q = flow rate [m3/s] 
• H = pump-turbine head [m] 
• M = torque on the runner [Nm] 
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(a) (b) 

Figure 1. S-shaped characteristic ((a): discharge, (b): torque) of a pump-turbine at a 
constant guide vane opening. 

 
The slope of the characteristic gives a necessary but not sufficient condition for the instability of the 

hydraulic system. Further criteria lie in the elasticity, inertia and the amount of energy dissipated in the 
system. Once the energy transferred is larger than the dissipated one, the system becomes self-excited. 

3.  Pump-turbine model 
The specifications of the model pump-turbine investigated are listed in Table 1, where D1 is the runner 
diameter at the pressure side (i.e. inlet at the turbine mode operation). The flow in the model pump-
turbine was simulated at 6°and 20° Guide Vane Opening (GVO)’s. 

 
Table 1. Pump-turbine model characteristics. 

  

Parameter Value 
Number of runner blades 7 
Runner diameter D1 [mm] 422 
Rotational speed n [rpm] 1500 
Number of guide vanes 20 
Specific Speed nq= nQ(1/2) H-(3/4)

  26 
6° GVO: synchronization speed  
20° GVO: best efficiency point (BEP)  

4.  Numerical analysis 

Numerical Setup, Grid, Boundary Conditions & Turbulence Models 
The computational domain represents the entire pump-turbine and consists of a spiral case, stay vanes, 
guide vanes, runner and draft tube (Figure 2 (a)). The draft-tube outlet is extended to a certain length 
(except for load rejection simulation) for smoothing the swirling flow and achieving easier convergence. 
Grids for different domains were generated by software ANSYS ICEM (original model) and by 
Pointwise (grid sensitivity study). The grid specifications for the original model can be found in Table 
2. Special refinements were applied in the runner and guide-vanes domains. 3D, steady and unsteady 
numerical simulations are performed using the CFD codes ANSYS-CFX and an in-house code, which 
is a modified OpenFOAM version. More information about the in house code can be found in [2]. 
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The boundary conditions were defined as follows: at the spiral case inlet the mass flow rate, 
turbulence intensity of IT = 0.05 and a viscosity ratio (νt/ν) of 10 are specified. An area-averaged static 
pressure of p = 0 is prescribed at the draft tube outlet. Exit opening condition allows re-entering of flow 
at the outlet and thus reduces numerical oscillations. The walls are defined as no-slip walls. Considering 
the rotating runner domain, a constant rotational speed n is predefined for all computations. The 
individual hydraulic components are numerically coupled by General Grid Interfaces (GGIs) in 
ANSYS-CFX and by Arbitrary Mesh Interfaces (AMIs) in the in-house code. These algorithms also 
allow transient rotor-stator interactions which are needed to connect the rotating runner with its 
surrounding stationary domains. Maximum simulation duration corresponds to ca. 20 runner 
revolutions. All evaluated quantities are averaged over a period of ca. 10 runner rotations. The time 
resolution during the transient simulations was 1/20 of a runner-channel rotation, which corresponds to 
ca 2.6° per time step. During the numerical simulations, the results of steady RANS simulations were 
used as the initial flow field for the transient simulations. The time-step was set to 0.29 ms, and the 
maximum number of iterations per time-step was set to 10 with the convergence criteria of residual at 
each time-step was in the order of 10-5. 

Based on a comprehensive analysis of the literature about pump-turbine CFD simulations (see section 
6), the SST k-ω, standard k-ε, and BSL EARSM turbulence models are applied.  

 
Table 2. Grid specifications (ICEM) for the original model. 

 Total Spiral-Case Guide Vanes Runner Draft-Tube 
Mesh size (Hexahedron) 5.8 Mio. 1.5 Mio. 1.5 Mio. 2.3 Mio. 0.5 Mio. 
Min. Angle [°] 13.1 13.1 39.7 24.1 42 
Max. Aspect Ratio 777 777 139 403 139 
Max. Volume Change 79.5 69.1 2.4 79.5 2.6 
Min. Determinant 0.17 0.17 0.45 0.52 0.63 

 

  
(a) (b) 

Figure 2. Computational grid used for the CFD simulations with spiral case, guide-vane, runner 
and draft tube zones highlighted (a) and zoom in the guide-vane/runner interface zone (b). 

5.  Results 

5.1.  Transient simulations at fixed operating points 

5.1.1.  Performance of different turbulence models: Mean values. Only the results of the transient CFD 
simulations are presented. Figure 3 is a comparison of the pump-turbine Kcm1-Ku1 (discharge) and Km1-
Ku1 (torque) turbine mode characteristics between measurements and in-house code CFD predictions 
for two guide vane openings GVO 6° & 20°. Shown in all Kcm1-Ku1 figures is also the runaway line, 
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i.e. the curve where the runner-torque is equal to zero. The turbine discharge characteristic at a constant 
GVO starts from part load operation, moves through BEP and then through runaway along the S-shaped 
curve down to turbine brake and reverse pump modes. Important point with regard to the pump-turbine 
numerical simulations is the ability of the CFD simulations in capturing the curvature (S-shape) of the 
curve with the change of the slope as depicted in Figure 1. The comparisons in Figure 3 show good 
agreement between the experimental data and k-ε CFD predictions for both GVO’s. The SST k-ω CFD 
simulation is also capable to predict GVO 20° test data, but fails for the GVO 6° as can be better seen 
in Figure 4. 
 

  
(a) (b) 

Figure 3. Comparison of the pump-turbine characteristics ((a): discharge, (b): torque) between 
measurement and CFD (in-house code, k-ε & SST k-ω) for GVO 6° & 20°. 
 
With regard to the speed no load instability and synchronization of the pump–turbine GVO 6° is 

important. Figure 4 depicts the CFD prediction of the Kcm1-Ku1 characteristic for GVO 6° in the S-
region and comparison with the experimental data. The CFD calculations are carried out with the 
application of the following turbulence models: k-ε, SST k-ω, SST k-ω with curvature correction, and 
BSL EARSM. CFD data for both solvers i.e. CFX and in-house code are presented in Figure 4 and 
comparisons of the simulations between the in-house code and ANSYS CFX indicate no detectible 
difference in results for the same operation point. Real effect on the CFD predictions has the turbulence 
model. 

As can be seen in the Figure 4, the SST k-ω turbulence model cannot calculate the S-shaped 
characteristic for GVO 6°. Important point is not only the difference between the predicted and measured 
values, but also the incapability of the SST k-ω model of predicting the instability (i.e. positive slope of 
the Kcm1-Ku1 curve in S-region) at speed no load conditions. The curvature correction did not bring any 
improvement in the prediction of the SST k-ω model. Although the accuracy in turbine brake mode is 
not very good the k-ε turbulence model produces acceptable results and the best result is achieved with 
the BSL EARSM turbulence model concerning the accuracy as well as reflecting the S-shape (including 
the slop change) of the S-curve. BSL EARSM seems to be a suitable choice to reproduce the 
characteristic and flow features in the pump-turbine investigated at low GVO’s. 

5.1.2.  Performance of different turbulence models: Fluctuating behavior. According to the Figure 4, 
the SST k-ω turbulence model cannot predict the instability behavior of the pump-turbine at GVO 6°. 
In Figure 5, the in-house code CFD predictions with the SST k-ω and k-ε models are compared with 
respect to the oscillations of the solutions for three different operating points. During the transient CFD 
calculations in the S-region, the Ku1 values oscillates around its mean value and the magnitude of these 
oscillations for the SST k-ω model predictions are significantly smaller in comparison to both the k-ε 
and the EARSM models. The variable δKu1 in Figure 5 (a) is defined as Ku1,max – Ku1,min. Figure 5 (b) 
shows the magnitude of the oscillations for the discharge characteristic. The flow field calculated by the 
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SST k-ω model in the S-region of instability oscillates considerable less than the calculation with the k-
ε model. Similar difference between SST k-ω model and k-ε model simulations is also observed during 
the load rejection simulation of the same pump-turbine model (see section 5.2). 
 

 
Figure 4. Influence of the turbulence model on the predictions of the discharge characteristic in 
S-region for GVO 6° (Data are in house code simulations unless specified otherwise in 
parenthesis). 

 

  
(a) (b) 

Figure 5. Oscillatory behavior of different simulation models for GVO 6°. 

5.1.3.  Grid independence study. Grid independence studies were conducted with several different mesh 
refinement levels. Two types of grid dependency investigations were carried out. A global grid study in 
which the boundary layer grid was not influenced and a separate grid refinement of the boundary layer. 
The investigated grid resolutions are summarized in Table 3. 
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Table 3. Grid independence study (RU: Runner, GV: Guide Vane). 

 GV Mesh Size RU Mesh Size GV y+average RU y+average 
Refinement 1 4.7 Mio. 2.3 Mio 19 20 
Refinement 2 2x Refinement 1 2x Refinement 1 19 20 
Refinement 3 2x Refinement 2 Refinement 2 19 20 
Low Reynolds Mesh 11.8 Mio. 11 Mio. 0.8 1.7 
 
The mesh refinement study was carried out for each turbulent model separately. Different levels of 

grid refinements shown in Table 3 did not influence the global parameters such as the turbine head (only 
0.2 % difference between fine and “coarse” grids). Figure 6 shows the results of the mesh refinement 
studies for the k-ε turbulence model. Overall and local grid refinements (refinement near the wall regions 
and refinement of the runner and guide vane grids) did also not have any noticeable impact on the 
calculated Kcm1-Ku1 values as shown in Figure 6a and Figure 6b, which is an enlarged version of the 
Figure 6a. Considering the numerical accuracy and computation time, for all simulations the original 
model, inclusive the same mesh (Table 2) was used. 

 

  
(a) (b) 

Figure 6. The effects of mesh refinement for simulations with k-ε turbulence model (in house 
code). 

 

5.2.  Load rejection (dynamic simulations) 
A 3D-CFD simulation is conducted to investigate and model the load rejection processes of the model 
pump-turbine starting from a stable operating condition at GVO 24° and at design speed . The load 
rejection simulation includes one-way FSI (Fluid Structure Interaction) for the GV motion, which 
setting's changes from 24 to 6 degrees. The boundary conditions were taken from the 1D transient system 
simulations, imposing the resulting angular velocity, GV position and mass-flow as a function of time 
(see references [3] and [4] for more detail). The operating conditions extend through the S-shape region 
of the turbine characteristic into the turbine-brake and reverse-pump domain as can be seen from the 
Kcm1-Ku1 representation in Figure 7 (a). Changes of turbine head and torque over time during the load 
rejection simulation are also depicted in Figures 7 (b) respective (c) for the k-ε and SST k-ω models. 
Both head and torque changes from the load rejection simulation follow the 1D prediction over the 
complete simulated time-frame, but there is a big difference in the calculated magnitude of oscillations 
between two turbulence models. According to the Figure 7 (a), there are large oscillations in the GVO 
6° region between 15 and 25 seconds of the load rejection simulation (the turbine is oscillating along 
the S-shaped GVO 6° characteristic). k-ε simulation depicted in Figure 7 (b) & (c) reflects these 
oscillations of high magnitude in head and torques curves whereas SST k-ω model predictions are not 
able to reflect these oscillations between 15-25 seconds. The SST k-ω simulation produces a large 
dissipation in the vaneless space between GV and runner, thus damping the instabilities even in the S-
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region. Large oscillations of the head or torque signals are indicators of the instabilities on the pump-
turbine, which are mostly triggered by the vortex structures in the vaneless space (or runner inlet) and 
play an important role for unstable operating conditions. 
 

 

(a) 

  
(b) (c) 

Figure 7. Load rejection CFD results (in-house solver) with the k-ε and SST k-omega models. 
 

5.3.  Analysis of the flow patterns for simulations with different turbulence models 
In order to further analyze the reasons of the different predictions by the SST k-ω and k-ε models, 
contour plots of the radial velocity on the runner midplane (top part of the Figure 8) and on a 
circumferential plane between hub and shroud in the vaneless space prior to the runner inlet (bottom 
part of the Figure 8) are plotted. As can be seen on the contour plots (Figure 8) there is a strong vortex 
driven backflow (red color) at the inlet of the runner observed at all channels simultaneously in case of 
SST k-ω model, whereas the k-ε model shows this behavior at the runner inlet only at certain channels. 
The vortex structures predicted by the SST k-ω model are very “stable” and predicted by the k-ε are not 
only oscillating but also changing in the size. There is vortex formation and-destruction for the k-ε case 
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and there are positions along the runner inlet where some of the channels are free of vortices, so that the 
flow can enter the runner. The formation and vanishing of the vortices seems to produce the large head 
and torque oscillations observed in Figure 7 (b) & (c). Similarly, the radial velocity distribution in the 
vaneless space shows a backflow region (red color) for each runner channel, which spans almost over 
the complete width and exists at all runner channels for the SST k-ω model calculation. Same backflow 
region for the k-ε model simulation show differences in circumferential direction with respect to the 
individual runner channels.  
 

  

  

 
Figure 8. Contour plots of the radial velocity on the midplane (top part) and at the runner 
inlet (bottom part). Left figures: k-ε model, Right figures: SST k-ω model (both CFX 
simulations). 

 

6.  Comparisons with similar CFD simulations from the literature 
Several works have been published in the literature, which aims precisely at computing the 
characteristics of pump-turbines in turbine mode, including the sloping gradient of the S-shape and 
investigating the flow phenomena at off-design conditions. In addition to the CFD solvers used (ANSYS 
CFX, ANSYS Fluent, and OpenFOAM) main differences in the CFD simulations are in the turbulence 
models: SST k-ω, SAS-SST, standard k-ε, RNG k-ε, four-equation v2-f model, and BSL EARSM 
turbulence models are applied. 

In general the CFD results are in good agreement with the experimental data in predicting the 
characteristics for high guide vane angles i.e. guide vane angles at or near BEP, ([5], SST k-ω, medium 
nq pump-turbine) ([6], SST k-ω, high nq pump-turbine), ([7], SAS, medium nq pump-turbine) ([8], RNG 
k-ε), ([9], SAS, low, medium, and high nq pump-turbines) but the difficulties increase when calculating 
the S-shaped characteristics at low guide vane angles near synchronization, where especially the SST k-
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ω model has problems in predicting the characteristics. According to [10], (medium nq pump-turbine) 
v2-f model can be used to simulate characteristics of pump-turbine in the whole guide vane opening 
range and the SST k-ω model can only be used for large guide vane openings. A detailed CFD study 
([11], with SST k-ω, standard k-ε, BSL EARSM, and v2-f models) on three different pump-turbines, 
also concludes the incapacity of the SST k-ω model to accurately determining S-shaped characteristics. 
[12] (SST k-ω low nq pump-turbine) seems an exception, where SST k-ω model was able to predict the 
S-shaped characteristics at the GVO’s of 6°, 21° and 24°.  

Simulations with low nq pump-turbines are in general more challenging. [13] (low nq pump-turbine) 
shows good prediction of the S-characteristics with the k-ε model. [14] uses detached eddy simulation 
(DES) and found better agreement with the test data than using the SST k-ω model. [15] uses SAS-SST 
model and successfully calculated the characteristics at different GVO’s. SAS-SST model introduces 
the von Karman length-scale into the turbulence scale equation and this information allows the SAS-
SST model to dynamically adjusting to the resolved structures in the unsteady Reynolds Averaged 
Navier-Stokes simulation, which means a LES-like behavior in the unsteady flow regions. At the same 
time, the model provides standard RANS capabilities in stable flow regions. 

7.  Conclusions 
This work aims at developing a CFD methodology to accurately predicting S-shaped characteristics of 
the reversible pump-turbines with an acceptable computational cost and power. The study especially 
reveals the influence of the turbulence model on computed results.  

In general, the unsteady CFD simulations under transient operating conditions can reproduce the 
measured S-shaped characteristics at high guide vane angles with acceptable accuracy and supply 
beneficial information about the flow phenomena occurring along the S-curve. 

Although the continuous development in numerical methods manifests itself in big improvements in 
prediction quality, CFD simulations of pump-turbines in the speed no load region with S-shaped 
characteristics is challenging especially at low GVOs. In this work, simulations at small guide vane 
angles (around 6°) with the k-ε turbulence model showed good agreement with the test data, while for 
the simulations with the SST k-ω model the behavior around the S-shape (and thus the instability) could 
not be captured. The highest accuracy is yielded for both CFD tools used Ansys CFX and in-house code 
with the BSL EARSM turbulence model. These results are in agreement with the published literature in 
this area, where BSL EARSM seems to be most suitable model to reproduce flow conditions in the 
pump-turbine at speed no load conditions at a reasonable computational cost and time. SAS-SST and 
v2-f turbulence models are not used in this work, but according to the literature survey, both models are 
working well at speed no load conditions, but with a significant increase in grid size and computation 
time.  

The analysis of the flow structures at the runner inlet and in the vaneless space as well as the results 
of the load rejection CFD simulations show that the flow field, including the vortex structures predicted 
by the SST k-ω model predictions are much more “stable”, than those of the predictions of the k-ε and 
EARSM simulations. More detailed fluid dynamic analysis of the flow field and further explanation of 
the speed no load instability using the CFD and test data of this low nq pump-turbine model will be 
provided in a following paper. 

A validated CFD methodology, which is capable of predicting the characteristics of the pump-
turbines in S-region (speed no load conditions) with a reasonable computational cost and time is crucial 
in order to carry out design improvements by influencing the S-shape of the characteristics and thus 
improving the stability. 
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