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Abstract. The instability of stationary vortex structures is manifested by an oscillation at several 

fundamental frequencies which are associated with characteristic shapes. It is caused by the non-

linear convective terms in the Navier-Stokes equations. The frequency of unstable oscillation 

can be detected by the Fourier transform of the velocity and the pressure field themselves or their 

constitutive modes. It is this knowledge of the constitutive modes that is the basis for using the 

inverse method to define a reduced mathematical model in a finite-dimensional space. This 

model allows to analyze the vortex structures in the region of instability and their dependence 

on inhomogeneous boundary conditions. Present paper describes the essential steps of deriving 

an inverse method. The inverse method is applied to fluid flow in the draft tube of a swirl gen-

erator. The dynamic mode decomposition and the discrete Fourier transform of the flow field are 

assessed as possible methods that can provide the modal and spectral matrix for the model. 

1. Introduction 

The subject of this article is a simplified mathematical model allowing an analysis of vortex structures 

in liquid flow and their elimination by external forcing. Unsteady vortex structures result from a loss of 

stability of a steady flow. The essence of unsteady liquid behavior is to be found in the convective terms 

of the Navier-Stokes equations and their dependence on the boundary conditions [1]. In the search for 

the causes of the instability, linearized Navier-Stokes equations can be used. In such modified equations, 

the convective terms are heavily dependent on the steady flow velocity �0(�, �). For small values of 

velocity and pressure and appropriate boundary conditions, the irreversible stress tensor can dominate 

over the convective terms and the liquid flow is steady. When increasing the liquid velocity, the asym-

metric part of the convective terms prevails and unsteady vortex structures are formed. It should be 

noted that the asymmetric part of the convective terms is dependent on the boundary conditions. Appro-

priate boundary conditions can significantly affect the stability of the flow. 

The following analysis is focused on a linear model that describes the fluctuating components of 

liquid velocity and pressure. The mathematical model is based on a modal decomposition of turbulent 

velocity and pressure field. As a test case, the flow in the draft tube of a swirl generator was selected. It 

exhibits a spiralling vortical structure, the so-called vortex rope. Mitigation of the vortex rope in Francis 

turbines is desirable as it affects the opperating range of these machines, and is still a subject of research. 

Two decomposition methods are investigated – the discrete Fourier transform (DFT) and the dynamic 

mode decomposition (DMD). Their dimensionality reduction performance is also assessed by compari-

son with the energetically optimal proper orthogonal decomposition. Low-dimensionality is a key aspect 

of nonlinear reduced-order models for flow control, which are out of the scope of this paper. 
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2. Mathematical model 

Let a vector  be composed of the components of velocity and pressure at selected points of the com-

putational domain in time �. So �T = (�T, �T). Consider an incompressible Newtonian liquid. For a dis-

cretized spatial domain, the linearized Navier-Stokes equations can be written in the form 

� d�′d� + �(�0)�′ + ��′ = �, (2.1) 

��′ = �, (2.2) 

where the vectors  and  arise due to incorporation of external forcing. The apostrophe denotes the 

fluctuating component, i.e. the time-dependent deviation from the fixed point �0T = (�0T, �0T). After 

some algebraic manipulation, this model can be written as 

d�′d� + ��′ = �. (2.3)

We assume a purely oscillatory �′, in which case the operator �  is antisymmetric and has the form 

� = [� �� �]. (2.4)

Consider the eigenvalue problem for the matrix �  and its complex conjugate transpose � ∗ 

� −  " = 0 (2.5)

� ∗# − #$ = 0. (2.6)

The following relations can be derived: 

# ∗ = %,        # ∗� = ". (2.7)

The modal matrices  , #  can be divided into the velocity part  &, #& and the pressure part  ', #' 

 = [ & '] ,       # = [#&#']. (2.8) 

Since the operator �  is antisymmetric, the eigenvalues are purely imaginary and paired. The eigenvec-

tors are paired as well. With a known modal and spectral matrix, the operator �  can be reconstructed 

based on the following relations: 

� =  &"#&∗,       � =  &"#'∗, (2.9) 

� =  '"#&∗,       � =  '"#'∗. (2.10) 

The matrix # ∗ can be computed from (2.7) using the inverse matrix  −1 

# ∗ =  −1. (2.11)

The solution of the linear system (2.3) based on the modal decomposition (2.5) has the form 

�′(�) =  ) (�) −1�(0) +  ∫ ) (� − +) −1�(+),+
�

0
, 

(2.12)

where ) (�) is the spectral matrix exponential ) (�) = exp("�). (2.13)

If the dynamics are dominated by coherent structures, most of the modes are negligible. The modal 

matrix   is after their omission no longer square and the inverse matrix must be replaced by the 

pseudoinverse matrix  †: 
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�′(�) =  ) (�) †�(0) +  ∫ ) (� − +) †�(+),+
�

0
. 

(2.14)

The main advantage of linear models is the knowledge of the solution in closed form including external 

forcing, so the time dependence of the vortex structures can be studied directly using the relation (2.14). 

Thanks to it, the theory focused on the determination of control laws is well-developed. Here, we present 

a method which enables to instantly eliminate a selected pair of modes from the dynamics. Consider 

external forcing �(+) in the form �(+) = �0exp(−i2+). (2.15) 

Plugging this expression into (2.14) leads to 

�(�) =  ) (�) †�(0) +  
⎝⎜
⎜⎛∫ ) (� − +)exp(−i2+),+

�

0 ⎠⎟
⎟⎞  †�0. 

(2.16) 

The integrand has the form 

) (� − +)exp(−i2+) = [
exp(−i(2 − :1)+ − i:1�) 0 00 ⋱ 00 0 exp(−i(2 − :< )+ − i:< �)]. (2.17) 

After integration we obtain 

∫ exp(−i(2 − :)+ − i:�),+
�

0
= exp(−i2�) − exp(−i:�)−i(2 − :) . 

(2.18) 

Let a matrix >  be defined as follows 

> =
⎣⎢
⎢⎢
⎢⎡ 1−i(2 − :1) 0 0

0 ⋱ 00 0 1−i(2 − :< )⎦⎥
⎥⎥
⎥⎤. 

(2.19)

Using this matrix, equation (2.16) can be rewritten 

�(�) =  () (�) †�(0) + > †�0exp(−i2�) − ) (�)> †�0) =  E(�), (2.20) 

where E(�) is a time-dependent < × 1 vector. Since the modal matrix   is composed of paired modes, 

to eliminate a given pair, the following condition must be satisfied: �GℎG(�) + �G+1ℎG+1(�) = 0, (2.21) 

where �G denote the G-th column of the matrix   and ℎG(�) denote the G-th element of the vector E(�). 
This condition ensures that the selected pair of modes does not contribute to the resultant dynamics. Let 

us analyze the structure of ℎG(�). With the known structures of the matrices ) (�) and > , the following 

expression can be obtained 

ℎG(�) = exp(−i:G�)�G†�(0) + [exp(−i2�) − exp(−i:G�)−i(2 − :G) ] �G†�0, (2.22) 

where �G† denote the G-th row of the pseudoinverse matrix  †. To avoid forced oscillation, from this 

point on, we assume steady forcing, i.e. 2 = 0. In this case, the expression reduces to 

ℎG(�) = exp(−i:G�) (�G†�(0) − 1i:G �G†�0). (2.23) 
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Furthermore, we introduce the following expressions �G = M + Ni, (2.24) 

�G+1 = M − Ni, (2.25) 

�G† = O + Pi, (2.26) 

�G+1† = O − Pi. (2.27) 

With :G+1 = −:G, plugging the expressions (2.23)–(2.27) into the condition (2.21) yields the following 

conditions 

O�(0) − 1:G P�0 = 0, (2.28) 

P�(0) + 1:G O�0 = 0. (2.29) 

The external forcing �0 must satisfy these two conditions. In that case, the selected pair of modes is 

suppressed. 

Another and more common way to mitigate the dynamics is to design a closed-loop controller. Con-

sider for example proportional control 

� = Q�′. (2.30) 

Plugging into the equation (2.3) yields 

d�′d� = (Q − � )�′. (2.31)

The task is to construct the matrix Q  so that all eigenvalues of the matrix Q − �  have a negative real 

part. In such case, the dynamics are stable which means that the fluctuations will eventually fade out. 

 

3. Vortex rope 

The subject of this part is a spiralling vortical structure, the so-called vortex rope. This phenomenon is 

present in the draft tube of Francis turbines and significantly affects the operating range of these ma-

chines. It is therefore desirable to mitigate the instability by means of external forcing. 

For the purposes of experimental investigations, the vortex rope is usually generated by a swirl gen-

erator. It is a simple device that generates tangential velocity at the inlet of its draft tube so that the 

instability is formed. Our generator has two separate inlets (axial and tangential). This enables to set 

different ratios of axial to tangential velocity and hence to investigate the dependence of the vortex rope 

on the operating point. The geometry of the device is sketched in figure 1. 

 

 

Figure 1. Swirl generator apparatus. 
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The selected operating point for this study is given by the total flow rate of 10 liters of water per second 

from which thirty percent comes through the axial inlet and the rest comes through the tangential inlet. 

With these conditions, the flow field in the draft tube is similar to that in Francis turbines operating in 

part load [2]. 

The aim of this study is to find surrogate linear models from data. The vector � composed of <  = 300 

snapshots of the velocity and the pressure field was obtained by CFD simulation of the Reynolds-aver-

aged Navier-Stokes equations and the Reynolds stress equation model for the computation of the Reyn-

olds stress tensor components. During this period, the resultant vortex rope turns around the axis of the 

draft tube 14 times. It should be noted that the assumptions of the linearized governing equation (i.e. 

close vicinity of the fixed point) are not satisfied here so linear models are not physical. However, they 

can still be valuable as a guide for the determination of candidate control laws. The utilization of linear 

models is motivated by the existence of the solution in closed form and also by the Koopman theory, 

which states that sufficiently rich measurements of a nonlinear system can be advanced in time by a li-

near Koopman operator [3], [4]. 

We investigate two methods that provide a modal decomposition in the same form as the approximate 

solution of linear models (2.14) – the dynamic mode decomposition (DMD) and the discrete Fourier 

transform (DFT). It should be noted that a connection exists between these methods. As Chen et al. 

pointed out, subtracting the ensemble average from the data exactly reduces DMD to DFT which is 

typically undesirable [5]. Therefore, we applied DMD to the raw data. The purpose is to determine 

whether the vortex rope phenomenon is reducible, i.e. whether only a few modes are enough to capture 

the important dynamics. This is important for the construction of physical nonlinear reduced-order mo-

dels and their possible utilization in control [6], [7]. As both DMD and DFT are constrained by single 

frequency per mode, we compare their performance to the unconstrained energetically optimal proper 

orthogonal decomposition (POD). 

 

3.1 CFD results 

In the following, we concentrate on the pressure field since it is a good quantity for visualizations of the 

vortex rope (low pressure area induced by the rotating motion) and the amplitude of the pressure pulsa-

tions has direct impact on the operating range of Francis turbines. 

For the decompositions, data only from the draft tube were used. A weighted average of the frequency 

spectra was computed from the following relation: 

Rw(TU) = 112 W&2
∑ (R(TU, YZ)[Z ∑ R(TU, YZ))UZ ∑ ([Z ∑ R(TU, YZ)UZ ) , (3.1)

where Rw(TU) is a dimensionless weighted amplitude corresponding to the frequency TU. Cells of the 

computational grid with a larger volume ([Z is the cell volume) and a higher sum of amplitudes of all 

frequencies are stressed more. �Z = (YZ, \Z, ]Z) is the location of the cell center. The reference velocity & 

is given by 

& = _̂ld, (3.2)

where _ld is the area of the cross section of the draft tube with the lowest diameter (i.e. 50 mm in this 

case). The amplitudes serve as a measure of importance of each frequency. The weighted frequency 

spectrum is depicted in figure 2. together with visualizations of the vortex rope at three different time 

instants. The structure was made visible by means of the volume rendering method. Regions with high 

pressures, which are out of interest, were made transparent. The sharp transition from blue to yellow in 

the colormap unveils complicated vortical structures (yellow) in the main spiralling structure (blue). The 

predominant motion of the structure is a precession around the axis of the draft tube. Consequently, the 

most dominant frequencies and their corresponding modes are associated with the precessing motion. 
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Figure 2. Weighted frequency spectrum of the fluctuations of static pressure and pictures of the vortex 

rope at different time instants visualized by a volume rendering of the static pressure field. Higher values 

were made transparent so that only the low-pressure region induced by the vortex rope is visible. 

 

3.2 Dynamic mode decomposition 

The DMD was introduced by Schmid [8] as a method of computation of the best-fit linear operator a 

which advances measurements of the system in time 

b ′ = ab , (3.3) 

where the G-th column of the matrix b ′ equals to the G + 1-st column of the matrix of measurements b . Since the operator a is of c × c  dimension, i.e. usually too large, DMD computes a matrix ã 

instead, which is related to the matrix a using the singular value decomposition modes of the matrix b  

b = efg T, (3.4) 

ã = e Tb ′g f−1. (3.5) 

The DMD modal and spectral matrices are given by the eigenvalue problem of ã 

ãh = h"DMD, (3.6) 

where the modal matrix is computed from the matrix h as follows: 

 DMD = b ′g f−1h. (3.7) 

 

3.3 Discrete Fourier transform 

The DFT is a classical method which decomposes the input signal into harmonic components with zero 

decay/growth rate [9]. The elements of the modal matrix are given by 

k̂DFT(nG) = ∑ pn(U+1) ⋅ exp [− 2ris (G − <2 ) �U+1]
<−1
U=0 , (3.8) 

if <  is even. Next, we normalize each column of  ̂DFT denoted as �̂DFT(Z) 
�DFT(Z) = �̂DFT(Z)

‖�̂DFT(Z)‖ = �̂DFT(Z)
[�̂DFT(Z)∗ · �̂DFT(Z)]1/2. (3.9) 

  

t = 0,067 s t = 0,073 s t = 0,079 s 
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The spectral matrix "{|s  is a diagonal matrix. Consider a vector } which contains the diagonal elements 

of the spectral matrix. It is given by 

~G = − 2ris (G − <2 ) (3.10)

 

3.4 Proper orthogonal decomposition 

The POD method was introduced into fluid mechanics by Lumley [10]. The idea is to decompose the 

flow field into a set of modes optimal in the ℓ2 norm. It is in fact equivalent to the SVD of b  

b =  POD�gPODT . (3.11)

The singular values in � are equivalent to the ℓ2 norm of the modes squared, and serve as a measure of 

their importance. 

 

3.5 Results 

The most important modes connected with the precessing motion are depicted in figure 3. The spatial 

shapes are very similar for all decompositions. Differences among the methods can be seen in the tem-

poral evolutions of the modes. Only POD takes the changes of the amplitudes in time into account. 

DMD can account for purely decaying or growing evolutions only, which is not the case here. The small 

decay of the first DMD mode can be eliminated if more data are used. The most important drawback of 

DFT is that it assumes periodical data. Temporal evolutions of non-periodical data exhibit unphysical 

jumps between the last and the first value as the covered range starts to repeat. DMD temporal evolutions 

will, on the other hand, eventually suffer from nonzero real parts of the diagonal elements of the spectral 

matrix. This should be taken into account when using models based on DFT or DMD. 

The dimensionality reduction potential of the three methods can be assessed using the squared ℓ2 norm 

of the modes. For POD, this is obtained readily as it equals to the singular values �. For the rest two 

methods, the corresponding values need to be computed. We define a matrix of the temporal evolution 

of the -th mode. Its columns are given by 

�Z = �n�_nn�Z�n†�(0). (3.12)

The corresponding parameter �n  is then computed from the following expression 

�n = ‖real(�)‖2, (3.13)

where the Frobenius norm is used. This algorithm is valid for both DFT and DMD. We note that the 

parameter � is for velocity data proportional to kinetic energy. This is why POD is called energetically 

optimal.  

The chart in figure 5 shows the accuracy of the reconstruction of the flow field using a given number of 

the most dominant modes classified by �. POD is by definition the best. However, tens or even hundreds 

of modes need to be kept for a good accuracy. The effects of the unresolved scales need to be taken into 

account in nonlinear models. DFT initially outperforms DMD, but the situation gets reversed later. 

 

            

POD      DFT         DMD 
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Figure 3. The most dominant modes of the vortex rope. 

 

 
 

Figure 4. The dependency of static pressure on time for three distinct probes. Reconstructions are made 

from DFT modes classified using �. 
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Figure 5. The accuracy of the reconstruction of the flow field from a given number of the most dominant 

modes in ℓ2 norm. 

 

The convergence curve of DFT exhibits a jump in the convergence rate – after 8 summed modes, the 

convergence rate gets suddenly much smaller. To find out the reasons, in figure 4 we compare the re-

constructions from 9 and 23 modes to the original flow field. It is evident that 9 modes are enough to 

capture the main spiralling structure, but the complicated dynamics under the hub are poorly resolved 

in both cases. The poor performance is hence caused by the dynamics under the hub that exhibit many 

frequencies with comparable energy content. 

 
4. Conclusion 
In this paper, it has been shown that with knowledge of the modal and spectral matrix, it is possible to 

derive a linear model which can approximate the unsteady behavior of the part load vortex rope phe-

nomenon. The matrices can be obtained from data by the discrete Fourier transform or the dynamic 

mode decomposition. Performance of these methods was compared with the energetically optimal POD 

method. As the investigated dynamics do not satisfy the assumptions of the linearized Navier-Stokes 

equations, the linear model serves only as a guide and nonlinear reduced-order models should be used 

in order to find proper control laws to mitigate the pressure pulsations. Such models have to be built on 

only a few number of modes. We conclude that the dynamics of the vortex rope are too complicated to 

be fully captured by such models, and so the effect of unresolved scales needs to be taken into account. 

Especially the structures right under the hub were found irreducible. 
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