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Abstract. A method of analysis of cavitation peaks (impact events) using copulas is de-
veloped. Impact events, otherwise known as peaks, are defined as maximum in the pressure
amplitude applied to a material surface. These impact events were measured using a high speed
pressure sensor in a cavitation apparatus based on the ASTM G32 standard. A total of 46180
impacts were measured over 100 realizations of 4ms long recording. First, the impact duration
and amplitude’s joint marginals are modeled as gamma distribution (part of the exponential
family), determined by a Kolmogorov-Smirnov test (KS test). Then, copulas enable the study
of the dependence structure of the measured impacts characteristics. The measured parameters
are shown to not be independent but instead have a complex, asymmetric dependence structure.
There are almost no impacts that have a combination of a high amplitude (>12MPa) and low
duration (<5µs). The Tawn copula best fitted the data, as determined by a maximum likeli-
hood method. An extension of the KS test to two dimensions demonstrated that the copula is
a better fit compared with a joint distribution of independent marginals.

Keywords: Cavitation, Statistical analysis, Copulas, Impact events, Peaks, statistical depen-
dence.

1. Introduction
Cavitation is an interesting phenomenon: vapor forms in a liquid under low pressure, essentially
creating voids, or cavities in the fluid. In any liquid flowing through a pipe, an increase in
speed results in a static pressure drop. This implies that nozzles or bends that result in higher
flow speed can cause cavitation. In the context of the exploitation of turbomachines, these
bubbles are mostly cause of concern: they cause instabilities, vibration, noise, and erosion.
Rather surprisingly, cavitation bubble implosions cause shockwaves and microjets whose impact
pressure amplitude can exceed material’s yield strength [1]. For this reason, erosion of turbines
by cavitation is a major problem. Typical mass loss can be as high as 200kg after a few years of
operation [2]. Unfortunately, it is still quite difficult to predict the erosion rate as a function of
the operating condition of a hydraulic machines. As part of efforts to increase the reliability of
cavitation erosion models, a statistical analysis method of cavitation impacts is presented here.

Following the work of Franc and Hattori among others [3–6], we will describe a methodology
that can be used to analyze the dependence between measured peak parameters, the peak
amplitude (impact force or pressure) and duration of cavitation erosion impacts measured
using high speed pressure sensors. The impact energy caused by acoustic impacts is directly
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proportional to both these parameters [7] and the dynamics of deformation and erosion depend
on the strain rate [8]. Certain impact duration and loading conditions observed in cavitation
can enable high strain-rate effects, for which models such as the Johnson-Cook dynamic failure
are useful [9]. As such, better impact modeling leads to better mass loss prediction.

The current impact measuring method is based on the recording of impact events using a
high-speed pressure sensor and an oscilloscope in an ASTM G32 based vibratory apparatus. By
measuring the impact amplitude and duration, and fitting this data to random distributions,
one can observe if the parameters are independent. If random variables are independent, their
joint distributions is simply the multiplication of their univariate marginal distributions. In the
case of dependence between these variables, a copula can be used to link these two margins into
one multivariate distribution, complete with the dependence structure [10,11].

We hope that copulas could be part of a package tools used to study cavitation and cavitation
erosion from the point of view of statistical analysis. The dependence structure of any number
of impacts parameters would be computed using copulas, while the occurrence of impacts in
time and space would be randomly generated by stochastic processes. Thus can be created
a model that describes the random nature impacts, with parameters fitted empirically to the
operating conditions. This model would be a rather simple mathematical object compared with
deterministic and time consuming computational fluid dynamics (CFD) currently used to model
cavitation. Random impact data could be generated with such a model, then combined with
finite element models of erosion to compute mass loss predictions. For now, we present the
methodology and results concerning the construction of a copula that describes the dependence
structure of cavitation impact parameters, their durations and amplitudes.

2. Methodology
First, some time will be spent on presenting the vibratory cavitation machine in which cavitation
impacts were recorded. Then, the peak measurement and statistical analysis methods based on
copulas will be explained.

2.1. Vibration apparatus
The vibratory cavitation erosion apparatus setup is shown in figure 1. The tap water used
was set to a temperature of 25 ± 5◦C using a recirculating water setup. The piezoelectric
transducer’s vibration frequency was 19.5kHz for an amplitude of 7µm. Inspired by the ASTM
G32 standard [12], it does not conform to the standard so erosion results cannot be compared
directly.

This apparatus creates a high amplitude pressure field in water, which causes cavitation
bubbles to nucleate, grow, then collapse. These bubbles collapse a certain distance to the
material surface, creating shockwaves and microjets that cause pits and damage to the material
surface. This setup can be used in two different ways: by using the vibrating head as a sample,
or by putting a sample a certain distance away from a more resistant head, such as Ti.

A pressure sensor manufactured by Muller Instruments was used to record the pressure
amplitude over time. It has a very fast rise time, 50ns for 10% to 90%, has a dynamic range
of -3MPa to 40MPa, and was placed at a distance of 1.4mm from the vibrating head. This
sensor uses a 1mm diameter polyvinylidene difluoride (PVDF) piezoelectric sensor to detect the
applied pressure. The actual mechanisms of bubble collapse cannot be observed with the sensor,
only the impact pressure they cause on the material surface. The sensor outputs a voltage that
can be converted to pressure with the factor 23.3kPa/mV, unique to the sensor’s combination
of sensitivity, cable capacitance and other parameters.

Knowing that impacts, or peaks, can have a full-width half maximum value lower than 1µs, a
sampling rate of 10MS/s or faster was found to be necessary to properly resolve the peaks. The
pressure amplitude was recorded for a total record time of 4ms at a sample rate of 25MS/s for
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Figure 1. Vibratory cavitation apparatus setup with pressure sensor and cooling.

one hundred repetitions. A setup with an oscilloscope proved sufficient for these needs. With
the recorded data, and after bandpass filtering ([3kHz, 1MHz]), it is possible to find the peaks,
the maximal values of the amplitude above a certain noise threshold. The appropriate noise level
for the impact measurements was found to be 20mV, converted to impacts of about 0.5MPa or
lower being ignored.

These repeated recordings are known as realizations in statistical analysis and stochastic
processes literature, and will be referred as such for the remainder of this text. The impact
duration was computed by finding two points around each peak, the closest local minimas. If
the impact amplitude hit zero closer to the peak than the closest minima, the closest zero was
used instead. This method was chosen rather than fitting each peak to a function and finding
it’s full-width half-maximum for simplicity’s sake. In the next section, the statistical analysis
methods of these points using copulas is presented.

2.2. Univariate statistical analysis
Sections 2.2 and 2.3 show how to model the dependence between random variables. We will
describe detailed step that are critical to building a copula: testing, selecting, fitting... starting
with univariate data. To keep this methodology short, we will not show much detail beyond
citing the methods by name and referring to relevant literature. For example, we refer to [13]
and [14] for a discussion on the concept of dependence in statistics. The construction of a copula
that models the dependence between random variables starts by fitting univariate data otherwise
known as the marginal distributions, or margins.

Here, we use the ubiquitous Kolmogorov-Smirnov (KS) test to reject, or not-reject, the
hypothesis that univariate data follows a certain distribution [15]. This test necessitates the
construction of empirical cumulative distribution functions (ECDF), by way of counting the
number of data points with equal or lesser value, and dividing by the total number of measured
points. This can be mathematically written as:

F̂n(t) =
1

n

n∑
i=1

1xi≤t (1)

with F̂n(t) the ECDF, 1A the indicator of event A which is equal to 1 if the condition A is met.
After finding at least one distribution that fits each data set, one can turn to fitting, or parameter
estimation. Many methods exist to fit a random’s distribution parameters, we refer to [15] for
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an overview. In the present context, software packages in the R and Python languages’ libraries
were used: the fitdist package [16] and the scipy package [17]. These packages contain functions
that make use, among other methods, of the maximum likelihood estimation method [15] to
fit data to random distributions. This way, one obtains fitted marginal distributions using
experimental data, ready to build a copula to fit to the multivariate data.

2.3. Copulas for bivariate dependence modeling
The present subsection’s namesake are functions that model the dependence between random
variables. They take as inputs the marginal distributions, the distributions of the random
variables estimated as if independent, and outputs the density in the combined data space.

If H(x, y) is the joint distribution of two continuous random variables, then we can uniquely
define the copula C as:

H(x, y) = C(F (x), G(y)) (2)

with F and G the marginal distributions of random variables x and y respectively. The name
copulas was chosen to emphasize the manner in which it couples univariate margins into one joint
distribution [11,13,14]. For example, the Gumbel copula has only one parameter θ ∈ [1,∞):

CG(u, v) = exp

[
−
(

(− log (u))θ + (− log (v))θ
)1/θ]

(3)

The case of independence can also be modeled as a copula: C(x, y) = xy. We also refer to
[10,13,14] for a descriptions of copulas, their properties, their construction and applications. We
found that many R-based software tools such as the packages copula [18–21] and VineCopula [22]
proved useful to test and estimate copulas using bivariate data. In particular, the Tawn copula
(or asymmetric logistic copula) [23, 24] of the VineCopula Package was found to fit the present
data well. This copula’s definition is based around so-called Pickands dependence functions.
Equation 4 presents the way one can calculate the density in the probability space using a
Pickands function A:

C(u, v) = (u, v)A(ω),with ω =
ln(u)

ln(uv)
(4)

The Tawn copula’s pickand function is written as:

A(t) = (1− ψ2)(1− t) + (1− ψ1)t+
[
(ψ1(1− t))θ + (ψ2t)

θ
]1/θ

(5)

with t ∈ [0, 1], 0 ≤ ψ1, ψ2 ≤ 1 and θ ∈ [1,∞). The Tawn copula is in actuality a Gumbel copula
with two additional asymmetry parameters: ψ1 and ψ2.

If these two parameters are equal to unity the Gumbel copula is obtained. In the VineCopula
package [22], the type 1 and 2 Tawn copulas refer to ψ1 = 1 or ψ2 = 1, and this package also
includes rotated version of these copulas.

3. Results and Discussion
3.1. Fitting the marginals
The raw and filtered amplitude data is presented in 2, the found peaks and duration points
are presented in figure 3. Any frequencies outside of the [3kHz, 1MHz] interval were filtered
before applying the peak finding and duration measuring algorithms. As one can observe, this
filtering introduces some amount of error on the maximal value of the peaks, but it is necessary
to remove the high frequency noise visible on the raw data. For every impact event, two marks
were measured: the pressure amplitude and the impact duration. An example of the peaks and
minimas around it used to measure the duration are presented in figure 3. A total number of
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Figure 2. Pressure amplitude as a function of time.

41682 peaks were detected in the 100 realizations of the 4ms long measurement, for an average
impact rate of 1.042× 105 impacts per second.

Figure 3. Peaks and surrounding mimimas.

The KS test was then used to determine that the gamma distribution is appropriate to model
both the amplitude and duration distribution at a significance level of 5%. By appropriate we
mean that these distributions were not rejected by the KS test.

Now, other distributions are also appropriate for this data, such as the general exponential
distribution for the amplitude data, but the gamma distribution was appropriate for both
datasets. The experimentally determined ECDF as well as the fitted gamma distributions are
presented in figure 4. The gamma distribution has two parameters, which can be described in
two ways:

• the shape parameter k and scale parameter φ

• the shape α = k and rate parameter β = 1/φ

The first parametrization was used here, with the additional location parameter loc that
describes the shift of the random variable compared to 0.

Using these parameters it is possible to draw samples from the distribution, also known as
random variate generation. The software tools used here provided ready made functions for this
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(a) Amplitude fitted to a Γ distribution:
k = 0.894, φ = 172mV−1, loc = 30.0mV.

.
(b) Duration fitted to a Γ distribution:

k = 1.85, φ = 3.83µs−1, loc = 0.537µs.

Figure 4. Maximum likelihood fitting of marginal distributions using experimental cumulative
density functions (ECDF).

purpose, we refer to literature on generation of random variates [25] for more information on that
subject. With the marginal distributions determined, one is ready to compute the dependence
structure using copulas.

3.2. Fitting the copula
As a first step to check the data, all the marks were binned in a 2D histogram, as illustrated in
figure 5. Then, points generated from the joint distribution computed by multiplying the two
marginal distributions (valid if independent) were generated and also binned, to visualize the
difference.

(a) Experimental samples. (b) Samples drawn from the joint distribution, assuming
fitted marginal distributions are independent.
2DKS test statistic with experimental data → 10.92%.

Figure 5. Impact amplitude and duration samples as 2D histograms. The total number of
events is 41682. The bins are approximately 0.4MPa and 0.4 µs wide, for a total of 100×100
square bins shown.
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As one can observe, the experimental points are skewed to the high duration region. There are
almost no impacts that have a combination of low duration (lower then 5µs) and high amplitude
(higher then 500mV or about 12MPa) in the experimental data. This is the first indication that
the random variables might not be independent. Also, the highest number of impacts seems to
have a combination of low amplitude and short duration, with the number of impacts in higher
amplitude and longer duration region decreasing exponentially.

To wit, the copula most likely to represent the data is the type 2 Tawn copula (with ψ2 = 1)
rotated 180 degrees, also known as the survival type 2 Tawn copula (one of so-called extreme-
value copulas). After the selection process, this copula was fitted to the data, the copula density
as well as the multivariate distribution density constructed using copulas were computed, and
are shown in figure 6. In this figure, the copula density is computed by injecting the data space
in the copula as C(x, y), and the multivariate distribution is found by injecting the marginals,
like so C(F (x), G(y)).

As is visible, the copula is highly asymmetric, skewed to the high duration values, with lower
probability density in the high amplitude-low duration region, as expected. The fitted copula
parameters are: θ = 1.69, ψ1 = 0.370, ψ2 = 1. The density is significantly higher closer to a
point just right of the origin, and decreases rapidly as the duration and amplitude increase.

(a) Copula density. (b) Multivariate distribution density.

Figure 6. Fitted type 2 Tawn Copula θ = 1.69, ψ1 = 0.370, ψ2 = 1.

With this copula it is possible to generate a number of random samples. To compare with
experimental data, an equal number of samples to the experimental peaks have been generated
in figure 7. The appearance of the random points more closely matches the experimental
data shown in figure 5 (b). To test for goodness-of-fit, an extension of the Kolmogorov-
Smirnov test to two dimensions (2DKS) [26–28] was implemented with Python (available at
https://github.com/Gabinou/2DKS) and applied.

This test compares two datasets of bi-dimensional data, and once again outputs a statistic
which indicates whether or not the hypothesis that the two datasets were derived from the
same distribution should be rejected. The 2DKS statistic for the samples generated using the
independent marginals is 10.92%, and decreases to 7.65% when generated using the copulas.
A decrease in the 2DKS statistic signifies that it is more difficult to reject the hypothesis that
the samples were derived from the same distribution. It seems more correct to assume that the
cavitation impact parameters are not independent.

Knowing this distribution, and the dependence structure, random variates that fit with
experiments can be generated, which can be of use for deformation and erosion modeling. Such

https://github.com/Gabinou/2DKS
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Figure 7. Two dimensional histogram of 41682 samples drawn from the fitted survival type 2
Tawn Copula. 2DKS test statistic with experimental data → 7.65%.

a model can be part of more generalized fluid dynamics or finite element computations aimed
at predicting the mass loss of cavitating turbomachines. In subsequent studies, the variation of
the fitted parameters as a function of operation of the vibratory apparatus will be performed.

4. Conclusion
Cavitation pressure was measured over time using a high-speed pressure sensor. Statistical
analysis was performed to determine the appropriate distributions with which to model the
cavitation impact characteristics: the impact amplitude and duration. A total of 41682 were
recorded over 100 realization of a 4ms long measure, for an average impact rate of 1.042 × 105

impacts per second. At a significance level of 5% with the KS test, the gamma distribution
among others was found appropriate to model these random variables.

Copulas were then used to model the dependence structure between the measured impact
amplitude and impact duration. It was found that an asymmetric type 2 survival Tawn copula
to be the most likely to fit the experimental multivariate data. By fitting the data to this copula
is obtained a multivariate density that enables the generation of random samples that fit the
experimental data better than assuming independence. This copula has a lower density in the
high amplitude (>12MPa) and low duration (<5µs) region. The two dimensional KS statistic
for the samples generated using the independent marginals is 10.92%, and decreased to 7.65%
indicating that the data generated by the copulas better fits with the experimental distribution.
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