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Abstract. The shedding of von Karman vortices on the trailing edges of turbine hydraulic 

profiles such as stay vanes, guide vanes and runner blades is a well-known mechanism of 

excitation for high frequency structural vibrations. Most commonly problems occur on stay 

vanes because the flow across the trailing edges is relatively uniform, and structural damping is 

low. Our analysis of the excitation mechanism under von Karman vortex shedding shows that in 

the vicinity of resonance the hydrodynamic damping becomes a non-linear function of amplitude 

potentially resulting in unacceptable limit amplitudes. Past studies have focused on frequency 

prediction, resonance avoidance and special trailing edge shapes to reduce dynamic forcing. On 

modern low head turbines resonance cannot always be avoided without undue hydraulic 

performance penalties. In our paper we demonstrate the applicability of a fluid structure 

interaction based approach to predict vibration amplitudes under von Karman vortex shedding. 

This type of prediction can be used to ensure that permissible amplitudes are not exceeded. We 

also present a strategy to achieve low vibration amplitudes. 

1.  Introduction 

Vortex shedding behind cylinders and bluff bodies has been widely studied and is well summarized in 

text books on flow induced vibrations e.g. [1][2] where references to the original literature can be found. 

Vortex shedding as a source of unacceptable vibrations or noise in hydraulic turbines has been reported 

as early as 1956 by Donaldson, e.g. quoted in [3]. It is reported to occur on turbine runner blades e.g. 

[4] and to the author’s knowledge only in one case on guide vanes [5]. Most commonly, it occurs on 

stay vanes because the flow across stay vane trailing edges is relatively uniform, and structural damping 

is low. An excellent review of stay vane cracking as a result of vortex shedding is given in [6]. A well-

documented specific case is documented in [7]. A summary on all turbine related vortex shedding can 

also be found in [8]. Two relatively recent PhD theses [9][20] have added new experimental data and 

insights. 

Most of the existing literature has focused on frequency prediction, resonance avoidance and counter-

measures, reducing or eliminating dynamic forcing from vortex shedding. Our paper investigates the 

mechanisms influencing vibration amplitudes and presents a methodology to predict the latter. A 

strategy to avoid unacceptable vibration amplitudes without avoiding resonance is also given.  

2.  Vortex shedding and frequency prediction 

An example of a vortex street visualized in a laboratory experiment by means of cavitation is shown in 

figure 1. Figure 2 shows vortex shedding behind the trailing edge of a stay vane visualized by z-vorticity 

from an unsteady CFD (Computational Fluid Dynamics) simulation. Essentially, vortex formation is the 
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result of a shear layer instability, resulting in its rolling up. Von Karman formulated the vortex street 

problem as two rows of potential vortices with opposing sense of rotation. Using a potential flow 

formulation and linear stability analysis von Karman could show that the only possible configuration of 

such rows of vortices was an alternating one with a specific geometric configuration, e.g. [2]. The 

theoretical ratio of the distance of vortex centers tw to vortex spacing in the same row lvK has to be 

tw/lvK0.281. Karman’s theory made no prediction about the shedding frequency.  

 

 

 

 

Figure 1. Vortex shedding behind a 

NACA0009 profile visualized by 

cavitation from [9]. 

 Figure 2. Vortex shedding behind a stay vane trailing 

edge in CFD z-vorticity (red -2000/s, blue 2000/s), 

definitions.  

 

Experimental results show that the shedding frequency fvK follows the well-known Strouhal-relationship  

 𝑓𝑣𝐾 = 𝑆ℎ ∙
𝑣∞

𝑡𝑤
 (1) 

with Strouhal number Sh, the effective free stream velocity v∞ and the effective wake thickness tw. A 

flow rate based theoretical value can be a reasonable estimate for v∞, but in many cases effects such as 

the proximity of the guide vane near full opening can have a significant effect of up to 20% on the 

shedding frequency. Using a purely geometric value for tw will result in a large spread of Strouhal 

number. A better estimate of the wake thickness may be obtained using boundary layer theory, but we 

believe that steady state viscous CFD is the best approach to obtain a reasonably reliable estimate of the 

shedding frequency based on the Strouhal number. From a velocity profile at the trailing edge obtained 

by steady state viscous CFD the effective velocity v∞ and the effective wake thickness tw can be 

extracted. We found the wake thickness obtained by a velocity cut off at 0.48v∞ to yield the best results. 

This method can be used on any hydraulic profile. 

Unsteady CFD can predict vortex shedding frequencies with good accuracy [10]. Accuracy has still 

been improved to about ±10% (figure 6). Figure 3 demonstrates the scatter of the Strouhal number for 

14 stay vane designs at multiple flow velocities and inflow angles each calculated with unsteady CFD. 

The scatter becomes narrower as the Reynolds number increases. Round trailing edges as well as very 

low Reynolds numbers are the two factors that account for the largest deviations from a near constant 

Strouhal number. The best average value for a Strouhal number to estimate a shedding frequency is 

Sh0.2, but the limitations of a Strouhal number based approach are clear from the graph. 

3.  Dynamic Force prediction 

3.1.  Analytical  

Heskestad [3] derived an analytical equation for the dynamic force on a stay vane resulting from vortex 

shedding. The derivation is based on von Karman’s ratio of wake to vortex spacing and potential flow 

theory to obtain the circulation. The latter is then used in Kutta-Joukowsky’s relation for a force on a 

profile based on bound circulation. Using a ratio tw/lvK0.29 and a Strouhal number of Sh0.2 the 

equation for the dynamic force amplitude as a result of vortex shedding can be reduced to  
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 𝐹𝑣𝐾.𝑎𝑛𝑎 ≈ 1.5
𝜌

2
𝐵0𝑡𝑤𝑣∞

2  (2) 

with the stay vane height B0 and the fluid density . The form of this equation is identical to any 

expression of a lift force on hydraulic or aerodynamic profiles where 1.5 would be the lift coefficient. 

 

 

 

 

Figure 3. Strouhal number variation on stay 

vanes, frequency from unsteady CFD, tw and v∞ 

from steady CFD. Round symbols from a 

round trailing edge. 

 Figure 4. Unsteady CFD normal force amplitude 

on a stay vane as function of flow velocity 

Fn(vel), wake thickness Fn(tw), and CFD over 

analytical force from equation (2).   

 

Equation (2) indicates that the dynamic force is proportional to the wake thickness tw and to the square 

of the free stream velocity v∞. Figure 4 confirms these proportionalities with results obtained by unsteady 

2D CFD. However, the ratio of the force amplitude from unsteady CFD over the analytical force from 

equation (2) Fn/FvK.ana in figure 4 clearly shows that with a lift coefficient of 1.5 in equation (2) we 

greatly over-predict the dynamic force compared to unsteady CFD. In this example the over-prediction 

is with a factor of 50 but on other profiles it can be as low as 2. Equation (2) can therefore serve as an 

upper limit but is in general too constraining for practical purposes.  

3.2.  Numerical 

Direct dynamic force measurements of good quality without fluid-structure coupling are difficult to 

perform in practice. We believe that numerical modelling with CFD is a good approach to predict the 

dynamic force from vortex shedding in cases where vortices are strong. The successful prediction of 

vibration amplitudes in section 6 indicates that the dynamic forcing is most probably be predicted with 

reasonable accuracy. 

4.  CFD modelling 

Unlike some unsteady phenomena in hydraulic turbines such as rotor stator interaction, von Karman 

vortex shedding is the result of shear layer instability. It is therefore significantly more challenging 

numerically. Our CFD computations are performed with the commercial code ANSYS-CFX. 

The computational mesh needs to be fine to adequately resolve the high gradients in the boundary 

layers that drive the vortex shedding and in the vortices themselves. A typical mesh for a stay vane-

guide vane combination is shown in figure 5 consisting of about 360k nodes and y+-values near 1. The 

basic approach for distributors is 2D, which has been proven to be fully sufficient for shedding frequency 

prediction [10][11]. Our results show that a 2D approach delivers an upper limit for the dynamic force 

amplitude compared to a 3D approach as one would expect. We use extruded hybrid hexahedral and 

prismatic meshes for vortex shedding because they permit strong local refinement where it is needed, 

i.e. in the wake and the boundary layer, without imposing refinement elsewhere. 
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Our standard numerical formulation uses a hybrid URANS-scale resolved approach with the SAS 

turbulence model. This has given good accuracy in the frequency prediction and results in largest force 

amplitudes compared with other two-equation turbulence models such as SST. Very slightly higher 

force amplitudes, and equally accurate frequency predictions have been achieved with an -Reynolds 

stress model, but at close to double the computational cost and higher convergence problems. 

 

 

 

 

Figure 5. Typical mesh for prediction of stay 

vane vortex shedding: 360k nodes and 

resolution of boundary layer with y+1. 

 Figure 6. Predicted over measured vortex 

shedding frequencies on three stay vanes and  

Hydrodyna NACA0009 profile. Full symbols 

from unsteady CFD, open symbols calculated 

with steady state CFD input and Sh=0.2. 

 

Small time steps, in the range of 200 to 400 per oscillation cycle, are required for good accuracy. 

The second order upwind advection scheme with a fixed blend factor of 1.0 in ANSYS is highly 

advisable for this application. While three to five coefficient loops are sufficient for frequency and force 

predictions, the modal work approach (section 6.1) requires a very high level of convergence with max 

residuals below 3 to 5e-6. Figure 6 shows a comparison of predicted and measured frequencies. The 

results from unsteady CFD fall within a band of ±10%.  

In the CFD based studies reported in the literature ([7], [11]-[14]), similar numerical approaches have 

been used. Two-equation turbulence models were tested in particular in early studies, but it became clear 

that more advanced turbulence options such as the hybrid SAS turbulence model or Reynolds stress 

models perform better for vortex shedding. When investigating trailing edges that were designed to 

generate low dynamic forcing, some authors even employed LES or DES approaches. Miyagawa et al.  

[11] achieved very good predictions of the shedding frequency using LES and found that 2D modelling 

achieved practically the same results as 3D modelling. D’Agostini [13] needed to resort to a DES 

approach with very fine meshes to predict vortex shedding on stay vanes of a Francis turbine that 

suffered recurring cracks when even the SAS turbulence model did not deliver realistic results.  

So far we have had good results with fine hybrid meshes, SAS turbulence model, small time steps 

and high convergence levels.  

5.  Excitation mechanism under von Karman vortex shedding 

It is understood that von Karman vortices can and will form on the trailing edges of almost all hydraulic 

profiles and therefore exert some degree of dynamic loading on the structure. On modern hydraulic 

profiles, with generally thin trailing edges, significant “excitation”, i.e. levels that lead to vibrations with 

either unacceptable noise or dynamic stress levels resulting in fatigue cracks, will only occur at or near 

resonance [6]. For unacceptable noise or fatigue cracks to occur, the natural shedding frequency has to 

be close to a natural frequency of the structure in water. Accurate prediction of natural frequencies in 

water has become well proven using standard finite element analysis (FEA) approaches, e.g. [19]. 

Resonance alone however does not explain the mechanism of excitation. In Naudascher [1] excitation 

due to vortex shedding is classified as “instability-induced excitation”, and can therefore not be treated 
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as a simple forced response. In fact, using the dynamic forcing from unsteady CFD without structural 

motion leads to very low effective damping to explain the amplitudes measured on turbine stay vanes. 

Structural damping alone is too low (0.03-0.3%) to explain the measured vibration amplitudes, while 

typical hydrodynamic damping values (in the order of multiple % [15]- [18]) are too high.  

Miyagawa [11] used 2-way modal fluid structure interaction (FSI) modelling to predict vibration 

amplitudes. In their study they determined the hydrodynamic damping as a function of reduced velocity, 

and identified a drop in damping, where the largest vibration amplitudes occur. They interpreted it such 

that negative damping can occur if no numerical damping were present, and that the high vibration 

amplitudes are therefore the result of a self-excitation.  

A different or an additional hydrodynamic mechanism must then be present under von Karman 

vortex shedding. In the vorticity plots in figure 7, we can see that vortices are generated by the imposed 

modal motion. These resemble von Karman vortices as the wave length v/f approaches values similar to 

those found in Karman vortices. In the figure this is the case for a flow velocity of 2m/s. Actual von 

Karman vortices are not present in these computations. Their frequencies would be well above the modal 

oscillation frequency. This means that at least one of the main mechanisms of transferring energy from 

the oscillating hydrofoil to the fluid (resulting in positive damping) resembles natural von Karman 

vortices. The decrease of hydrodynamic damping as the shedding frequency approaches a natural 

frequency of the structure can then be explained by this flow structure similarity.  

 

 

 

 

 

 

 

Figure 7. Three vorticity magnitude 

plots for damping plate H3 [16]-[17] 

with 1st bending mode imposed at 

74Hz. Karman vortex shedding is 

not resolved in these computations 

but would be about 200Hz for 2m/s. 

𝑢̂𝑟 is the modal reference amplitude. 

 Figure 8. Modal work (section 6.1) results for Hydrodyna 

truncated NACA0009 profile at 1st torsion mode: Unit 

damping 1 as function of von Karman over forcing 

frequency fvK/fs. Flow topology visualized by z-vorticity for 

selected flow conditions. Most important conclusion: 

hydro-dynamic damping becomes strong function of 

amplitude as fvK/fs  1.  

 

The actual vibration amplitude of a hydrofoil under Karman vortex shedding is obtained, when 

energy transfer per cycle between structure and flow are in balance. The concept described under 

“Energy consideration” in [1] applies to this situation. However, here the excitation and the dissipation 

stem from a very similar flow structure. The system exhibits an apparent hydrodynamic damping vK 

that is a function of the frequency ratio fvK/fn and the amplitude 𝑢̂𝑟 making the system non-linear 
𝑣𝐾

=

𝑓(
𝑓𝑣𝑘

𝑓𝑛
, 𝑢̂𝑟). This is compatible with Miagawa’s [11] findings short of calling it self-excitation, and is 
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confirmed by figure 8. We introduce the unit damping ratio 
1

=  ∙ (1 𝑚/𝑠)/𝑣∞ (to eliminate the linear 

dependency of hydrodynamic damping on free stream velocity) and plot it against the ratio of von 

Karman over forcing frequency (imposed in CFD computation) fvK/fs. Many things can be learned from 

this figure: The results can be obtained either by varying the velocity or the forcing frequency (blue and 

red lines); the damping ratio is relatively independent of vibration amplitude below a certain threshold 

amplitude when von Karman resonance is not present (blue and purple lines); above a certain amplitude 

threshold the damping ratio becomes dependent on the amplitude everywhere (yellow vs blue lines), but 

this is for amplitudes beyond practical importance in turbines. Most importantly for von Karman vortex 

excitation: near fvK/fs=1 the damping ratio becomes very strongly dependent on amplitude and varies 

from negative to positive values. This can also be seen in figure 11b (data correspond to green line in 

figure 8) where the strong non-linearity is also apparent. The amplitude at which a real system will 

vibrate is defined by =0. Note that damping shown in figure 8 represents hydrodynamic damping only.  

A necessary condition for a mode to respond with a significant amplitude is the proximity of the 

exciting frequency to the natural frequency as in all resonance phenomena. In addition, positive 

hydrodynamic damping is only available above a certain vibration amplitude because the hydrodynamic 

phenomena of natural vortex shedding and energy dissipation from modal motion have a very similar 

character (hydraulic mode). As the vortex shedding frequency and the frequency of oscillation approach, 

the wave lengths of the respective vortices join. As vibration amplitudes increase, hydrodynamic 

damping does so until a limit amplitude is reached.  

The two plateaus of near constant unit damping above and below a frequency ratio of 1 in figure 8 

correspond to the findings by [18] where two slopes of velocity versus hydrodynamic damping were 

identified when von Karman vortex shedding was present. This means that we have different 

hydrodynamic damping at sub and super resonant conditions under von Karman vortex shedding. In 

experiments where the imposed oscillation was far from the Karman vortex shedding frequency, only a 

single slope was measured [15].   

6.  Vibration amplitude prediction  

6.1.  FSI modelling 

Modal FSI modelling to predict vibration amplitudes under von Karman vortex shedding has been 

employed by [11] and [12]. Both use a similar approach, modelling the mode of interest as a single 

degree of freedom oscillator (1dof) and coupling it to the CFD solution. As a result one obtains the 

vibration amplitude directly. The same approach has also been used in the prediction of hydrodynamic 

damping e.g.  [16][17] and for the prediction of flutter-type self-excitation on pump turbine guide vanes. 

An alternative is the approach we call modal work approach where the mode shape of interest is imposed 

in a harmonic motion with a given amplitude during a CFD computation, figure 9. In general it is a 3D 

approach. The energy (modal work) exchanged between the structure and the fluid is computed from:  

 𝑊𝑚.𝑇 = − ∫ ∫ (𝑝𝑛 + 𝜏)
 

𝐴

∙ 𝑢̇𝑟(𝑡)
𝑇

0

𝑑𝐴𝑑𝑡 (3) 

with pressure p, surface normal n (pointing into the fluid), wall shear , time t, oscillation period T, mode 

shape velocity 𝑢̇𝑟, structure surface area A, and underbars denoting vectors. Magnitude and sign are 

related to hydrodynamic damping. The modal work can be converted into an equivalent linear damping 

ratio  for a given mode m by 

 
𝑚

=
𝑊𝑚.𝑇

2𝜋𝑚𝑚𝜔𝑛𝑠𝑤
2 𝑢̂𝑟

2 
 (4) 

with the modal mass in water mm, the modal natural angular frequency of the structure in water nsw, 

and the other symbols as before. The modal work Wm.T can be positive or negative. The sign can mean 

different things depending on the FSI system. In the context of a hydraulic profile under strong flow 

velocity in the absence of von Karman vortices it will generally be positive [15]. In the presence of von 
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Karman vortices, positive damping indicates that the natural vibration amplitude, i.e. the amplitude that 

will result as a consequence of energy balance, is smaller than the imposed amplitude. Conversely, if 

the damping is negative, the natural vibration amplitude will be larger than the imposed amplitude as in 

the example shown in figure 10 where the green line of the modal work per cycle drops below zero. In 

other situations, such as pump turbine guide vane flutter or air foil flutter, negative damping indicates 

self-excitation. In these cases no limit vibration amplitude of the system itself may exist, and a real 

system’s amplitude may only be limited by non-linearity such as contact with a nearby structure. 

 

 

 

 

Figure 9. Imposed 1st torsion mode shape 

on a stay vane and concurrent vortex 

shedding. Colouring: displacement on vane 

(blue -0.2mm, red 0.2mm displacements 

normal to vane camber line), vorticity 

magnitude on mid-span plane. 

 Figure 10. Modal work on a stay vane as function of 

time step for imposed amplitude of 0.2mm. 

Instantaneous value in red, summed over one period 

in green. At end of calculation Wm.T<0 => natural 

vibration amplitude >0.2mm. 

 

The modal work approach has the advantage of being numerically robust, which is important in the 

light of the numerical challenges that von Karman vortex shedding poses. It is well suited for the 

situation of von Karman vortices where the hydrodynamic damping is a function of frequency and 

amplitude as well as flow velocity. The natural vibration amplitude is found by imposing a number of 

amplitudes for a given frequency, flow condition and eigen mode. 

 

 
(a) 

 

 
(b) 

Figure 11. Measured and predicted vibration amplitudes of 1st torsion modes at von Karman 

resonance. (a) Stay vane: orange square is amplitude calculated from modal work corrected with 

measured structural damping in air. (b) Truncated NACA0009 profile from Hydrodyna project 

measured in laboratory, results reported in [20]. 
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6.2.  Validation 

The red lines in figure 11 show the type of results one obtains from the modal work approach: modal 

work – which can optionally be converted to a damping ratio with equation (4) – varying from negative 

to positive values as a function of modal amplitude for a given frequency. The point where the modal 

work or corresponding damping ratios intersect zero defines the predicted vibration amplitude.  

In the case of the stay vane, we see an over-prediction of the vibration amplitude, as one would 

expect if the modal work approach gave perfect results, because we are neglecting mechanical and 

acoustic damping. In this example structural damping in air was measured, and the orange square 

indicates the predicted amplitude including structural damping. Structural damping is generally very 

low in stay vanes. It is mode and case dependant. In the example for which we have measurements it 

varies between 0.03 and 0.3% for the different modes. Even when structural damping is considered we 

still see an over-prediction of about 30%. This may be due to acoustic damping or secondary effects not 

considered in the CFD. Inaccuracies in the transposition from measured strains to displacement 

amplitudes may also play a role. The level of over-prediction is acceptable and highly preferable over 

an under-prediction.  

The truncated NACA0009 profile was measured in the Hydrodyna project. The vibration amplitudes 

used here for validation were read out of a figure in [20] and transposed to the maximum displacement 

with a linear relationship. Some inaccuracy regarding the measured value may stem from this approach. 

We see an exact prediction of the vibration amplitude while we would expect to see a slight over-

prediction due to neglected structural and acoustic damping. Nevertheless, for practical purposes the 

results validate the modal work approach.  

7.  Strategies to avoid vortex shedding problems 

The most obvious approach to avoid vibration problems by von Karman excitation is to avoid resonance. 

With sufficiently thick stay vanes and thick trailing edges this could theoretically be achieved. In figure 

12a the red curve would have to be shifted below the light-green dashed line of the 1st bending mode 

natural frequency.  

 

 
(a) 

 

 
(b) 

Figure 12. Stay vane of an actual low head project with and without trailing edge extension. Left: 

natural and von Karman frequencies indicating resonance locations. Right: dynamic force amplitudes.  

 

In low head turbines this can lead to hydraulically unacceptable stay vanes. Modern stay vane profiles 

tend to be hydraulically and mechanically optimized, i.e. profiles are no thicker than necessary with thin 

trailing edges to avoid wake losses. In such cases, resonance can be unavoidable but need not be 

problematic. Key is that the vibration amplitude be lower than the permissible vibration amplitude under 

fatigue considerations. Using the modal work approach, the expected vibration amplitudes can be 

predicted. If these are higher than the permissible amplitudes, the shedding frequencies can be shifted 

to higher and the dynamic force to lower values by adding a trailing edge extension as shown in figure 
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12b resulting in a thinner trailing edge. The example shown in figure 12 is from an actual low head 

turbine designed by Andritz Hydro. Thinning the trailing edge is beneficial in three ways:  

1. Shedding frequency increase – approximately linear with trailing edge thickness – resulting 

in resonance with higher order, less easily excitable modes.  

2. Dynamic force reduction linear with trailing edge thickness and proportional to square of 

velocity. This can be used to shift intersection of dangerous modes such as 1st torsion mode 

to lower flow and therefore much lower dynamic forcing (black arrows in figure 12)  

double benefit in force reduction from thinner trailing edge and lower flow velocity at 

resonance. 

3. No hydraulic disadvantage: same or lower losses, same flow angles.   

In the example of the turbine for which frequency and force diagrams are shown in figure 12, the 

modal work imposing the permissible amplitude was calculated for all stay vane types and modes with 

risk of resonance. Some of the results showed negative modal work, i.e. expected vibration amplitudes 

greater than the permissible amplitudes. Stay vane extensions, as shown in figure 12, were then added 

and equally calculated with the modal work approach. Results for stay vanes with extension showed 

positive modal work for all cases, i.e. expected vibration amplitudes below permissible amplitudes.  

In table 1, results from strain gauge measurements at site during commissioning clearly show that 

the strategy was successful: actual vibration amplitudes of the modes with resonance are much lower 

than the permissible amplitudes.   

 

Table 1. Comparison of permissible and measured amplitudes on 

prototype stay vanes.  

Type Mode Natural 

Frequency 

Permissible 

Amplitude 

Measured 

Amplitude 

[-] [-] [Hz] [mm] [mm] 

II 1st torsion 134.3 0.065 0.008 

II 3rd bending 223 0.021 0.002 

II 2nd torsion 276 0.035 0.002 

 

The approach of thin trailing edges is also promoted by [14] where they are called “low energy 

profile”. At Andritz Hydro we prefer to verify that predicted vibration amplitudes are below permissible 

amplitudes as a final check. As a cautionary note, figure 13 shows that even trailing edges with 1mm 

thickness on a large prototype scale stay vane can have sustained natural vortex shedding according to 

CFD predictions. On the same stay vane a thicker 2.8mm trailing edge with a different shape was 

showing no natural vortex shedding, but generated unacceptable noise on the prototype. The modal work 

approach predicts vibration amplitudes for this 2.8mm trailing edge exceeding permissible amplitudes. 

Permissible amplitudes are derived from permissible dynamic stresses under fatigue considerations and 

depend on a manufacture’s experience. Some very good indications of actual values are given in [6]. 

 

 

 

 

Figure 13. Stay vane of a low head project with different trailing edge shapes, unsteady CFD.  
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8.  Conclusion 

Even today, a risk of unacceptable vibration amplitudes as a result of von Karman vortex shedding on 

hydraulic profiles – stay vanes in particular – remains. This is due to the fact that structural damping on 

these profiles is low and hydrodynamic damping under vortex shedding resonance becomes a non-linear 

function of vibration amplitude. Resonance cannot always be avoided, in particular on stay vanes of 

high efficiency low head turbines. Therefore it is essential to ensure that vibration amplitudes are lower 

than permissible amplitudes under fatigue considerations. Our proposed modal work approach to fluid 

structure interaction permits the reliable prediction of vibration amplitudes under von Karman vortex 

shedding. Using trailing edge extensions resulting in thin trailing edges is hydraulically beneficial and 

a suitable strategy to achieve low vibration amplitudes.  
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