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Abstract. The periodic loads from Rotor-Stator interaction is believed to be the main fatigue 

contributor in High Head Francis turbines. The calculation of the structural response, and thus 

fatigue, is heavily reliant on the proper hydrodynamic damping characteristics of the water - 

structure system. The relationship between the water velocity and the hydrodynamic damping is 

also of great interest. To investigate this, the hydrodynamic damping characteristics of a 

submerged hydrofoil is simulated in ANSYS CFX. A one-way coupling is implemented, where 

the blade is forced to vibrate with the first bending mode at the natural frequency, while the 

hydrodynamic work is calculated over a vibrational period. The velocity of the flow over the 

hydrofoil is varied in the range v = 2.5 - 45 m/s. Two distinct damping regimes are observed 

depending on whether the vortex shedding frequency is below or above the lock-in region. The 

hydrodynamic damping is approximately constant before, and linearly increasing after this 

region. Experimental data from the Norwegian University of Science and Technology is 

available for validation, and shows the same trends. The sensitivity with respect to maximum 

vibrational amplitude is tested, and shows that the hydrodynamic damping is independent of the 

amplitude as long as the deflections are small. 

 

1.  Introduction 

Several high head Francis turbines have had failures in the last decades [1, 2]. The reason is thought to 

be complex fluid-structure interaction in the runner, a resonance issue originating in the pressure field 

created from the interaction between the stationary and rotating components, known as Rotor-Stator 

Interaction (RSI) [3]. When designing a turbine, it is desired that the natural frequencies of the structure 

is far away from the known RSI frequencies. However, the presence of water, a relatively heavy fluid, 

severely changes structural response under loading. This complicates the calculations of the structural 

properties. The added mass effects tend to reduce the natural frequencies of the structure, as well as 

dampening the amplitude of the excitation [4]. In some rare situations, the different vibration modes 

may even change order [5]. Many have tried to obtain a rule of thumb with regards to the reduction of 

the natural frequencies, however this has not been found, and may not even be possible [4, 5, 6]. When 

solving for the frequency response in a submerged Francis turbine, a coupled acoustic-structural 

simulation is therefore necessary. A crucial input to such simulations is the hydrodynamic damping. As 

additional complexity, the water in a turbine is not stationary, in a high head Francis turbine, the relative 
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velocity between blade and water may reach v > 40 m/s. The effect of the moving water on the damping 

is therefore of great interest, and has been studied experimentally earlier [7, 8, 9]. The general trend is 

that the hydrodynamic damping is increasing as the flow velocity increase. A general recommendation 

as to the slope is however not obtainable. The maximal flow velocity in the abovementioned experiments 

was v ≈ 20 m/s. As far as numerical approximations, Monette et al. [10] provided a mathematical 

description of the hydrodynamic damping phenomena, and Liaghat et al. [11] performed a two-way 

fluid-structure coupled simulation on the same geometry. Similar experiments at the Norwegian 

University of Science and Technology have lately reached v ≈ 30 m/s over the hydrofoil, and also 

investigated the effects of the lock in region on the damping [12]. This article will try to replicate these 

experiments numerically, i.e. obtain the hydrodynamic damping coefficient in a system where water is 

flowing over a vibrating hydrofoil at different velocities. A one-way coupling of the fluid and structure 

will be performed to reduce the computational cost. The effects of the lock-in region on the damping 

will also be investigated.   

 

1.1.  Dynamic systems 

Second order oscillating systems have the following form;  

 

𝑀𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = 𝐹 (1) 

 

Where M, C, K is the mass, damping and stiffness matrices respectively, u denotes the structural 

deflection, and F is the loading. Dot notation denotes a one-time differentiation with respect to time, 

meaning 𝑢̇ represents velocity and 𝑢̈ represents acceleration. The structural deflection is assumed to be 

periodic with amplitude 𝑢 =  𝑢𝑜 and frequency ω; 𝑢 =  𝑢𝑜𝑠𝑖𝑛(𝜔𝑡). A crucial input to the above 

equation is the damping. There exist several different types of damping, in the normal damping model 

there is viscous, frequency-dependent damping, but there is also material, frequency-independent 

damping [13]. In water, the viscous damping has been found to dominate the material damping [14]. 

The scope of this paper is therefore limited to obtaining the viscous damping ratio.  

 

2.  Methods 

2.1.  Hydrodynamic damping 

In order to obtain the viscous damping ratio, we need to derive an expression for the damping effects of 

the water surrounding a structure. The damping ratio, ξ, of a second order system described by equation 

(1) is by definition [13]: 

 

𝜉 = 𝐶(2𝑀𝜔)−1 (2) 

 

However, obtaining the mass and the damping coefficients is not as easy as in a classical mass – 

spring - damper system. We need to develop other parameters which can replace the unknowns in 

equation (2). In the following we show that the hydrodynamic work extracted from a CFD analysis help 

us doing this.  

Assuming linear behaviour, the structural deformation, u, can be decomposed into a superposition of 

the different structural modes, 𝛷𝑖 , where a mode is the oscillating shape of a system vibrating at its 

natural frequency [13].  

 

𝑢 = ∑ Φ𝑖𝑞𝑖

𝑘

𝑖

(3) 
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Where 𝑞𝑖 is a scaling factor. The second order oscillating structural system, equation (1), can be 

rewritten using the above definition (using only one mode); 

 

Φ𝑇𝑀Φ𝑞̈  + Φ𝑇𝐶Φ𝑞̇ +  Φ𝑇𝐾Φ𝑞 = Φ𝑇𝐹 (4) 

 

Let the coefficients still be denoted M, C, K, F for simplicity. The coefficient of 𝑞̈ is usually 

normalized such that 𝛷𝑇𝑀𝛷 = 1  [15]. The second order system can now be written as; 

 

𝑞̈ + 𝐶𝑞̇ + 𝐾𝑞 = 𝐹 (5) 

 

Damping extracts energy from the blade. We are therefore interested in the work, 𝑊 = ∫ 𝐹 𝑑𝑥, over 

a period. The scaling factor will be periodic, 𝑞 =  𝑞𝑜𝑠𝑖𝑛(𝜔𝑡), as it follows the structural deflection, per 

equation (3). Integrating the left-hand side of equation (5) shows that only the first order term, ∫ 𝐶𝑞̇𝑑𝑞, 

yields a non-zero result over a vibrational period. The work is therefore as follows; 

 

𝑊 = ∫ 𝐶𝑞̇𝑑𝑞 = ∫ 𝐶𝑞̇2𝑑𝑡 = 𝐶 ∫ [𝑞0𝜔 cos(𝜔𝑡)]2𝑑𝑡 = 𝐶𝜋𝜔𝑞0
2

2𝜋/𝜔

0

𝑇

0

(6) 

 

Additionally, the hydrodynamic work, the work from the structure to the fluid, can be defined as: 

 

𝑊 = − ∫ ∫ 𝑝 ⋅ 𝑢̇𝑛𝑑𝐴𝑑𝑡
𝐴

𝑇

0

(7) 

 

Where T is one period, p is the fluid pressure, and 𝑢̇𝑛 is the velocity of the surface of the structure in 

the normal direction. Combining equations (2) and (6) finally leads to the definition of the hydrodynamic 

damping ratio; 

 

𝜉 =
𝑊

2𝜋𝑀𝜔2𝑞0
2

(8) 

 

Where W is the hydrodynamic work, equation (7), M = 1 [kgm2] is the modal mass, ω is the angular 

velocity [rad/s], and 𝑞0 the scaling factor [-]. The hydrodynamic work is obtained from a CFD 

simulation, the other parameters are obtained from a modal analysis. 

2.1.1.  Flutter. Hydrodynamic flutter denotes the possibility of negative damping, an instable vibrational 

system. If certain requirements are met, the fluid flow could transfer energy to the hydrofoil, rather than 

absorb energy. The system vibration would in that case be self - magnifying, and violent failure could 

occur. Starting with equation (7). The work per cycle from the fluid to the blade is as follows follows: 

𝑊 = ∫ ∫ 𝑝 ⋅ 𝑢̇𝑛𝑑𝐴𝑑𝑡
𝐴

𝑇

0

(9) 

 

For simplicity we rewrite 𝑝∫ 𝑑𝐴 =  𝐹 to obtain 

 

𝑊 = ∫ 𝑢̇𝑛𝐹𝑑𝑡
𝑇

0

(10) 
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Assuming harmonic motion of the blade, 𝑢 =  𝑢0𝑠𝑖𝑛(𝜔𝑡) and thus, blade velocity 𝑢̇ =
 𝜔𝑢0𝑐𝑜𝑠(𝜔𝑡). Let the force follow a similar harmonic motion, oscillating prior to the displacement with 

a phase angle ∆𝜙, 𝐹 =  𝐹0𝑠𝑖𝑛(𝜔𝑡 +  ∆𝜙). Solving the above integral for one period: 

 

𝑊 = 𝜔𝑢0𝐹0 ∫ cos(𝜔𝑡) sin(𝜔𝑡 + Δ𝜙)𝑑𝑡 = 𝜔𝑢0𝐹0sin (Δ𝜙)
2𝜋/𝜔

0

(11) 

 

We see that the work is purely controlled by the phase difference ∆𝜙. A positive phase angle indicates 

that the structure is absorbing energy, an unstable system. Conversely, a negative phase angle will 

dampen the vibration. A way of visualizing this is the following; if the blade velocity and force is plotted 

together (recall the integrand in equation (10)), the areas with equal sign of the two functions will 

contribute to instability. This is shown in figure 1, where the forcing function lags the vibration by ∆φ 

= −0.5. Both the force and blade velocity are scaled to unity amplitude. As the negative area is largest, 

there is a net energy loss in the blade, and the vibration is damped. Damping is expected in all the 

simulation in this article, however a difference in phase angle may provide insight into the damping 

phenomena. 

 

 

Figure 1. Illustration of phase shift between load and response. 

 

2.2.  Experimental setup 

The Waterpower Laboratory at The Norwegian University of Science and Technology (NTNU) have 

performed experiments on both an unsymmetrical hydrofoil (to resemble a Francis turbine blade), and 

a symmetric hydrofoil. The experimental setup and results from the unsymmetrical test can be found in 

[12]. The same setup is used for the symmetric hydrofoil tested in this article, some details will be 

included here.  

A symmetric aluminium hydrofoil was excited by electric muscles (Piezoelectric Macrofiber 

composite actuators from PI Cermaic) to vibrate in a harmonic motion. The hydrofoil was mounted in a 

stiff 150 mm x 150 mm steel test section, as a part of a longer experimental ⌀ 300 mm pipe system. 

Several Plexi glass windows were inserted to provide visual access to the blade. Strain gauges and Laser 

Doppler Vibrometry was used to measure the trailing edge motion. The frequency response was obtained 

for several different flow velocities and used to calculate the damping characteristics of the system. 
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Interested readers can find more details in reference [12]. Figure 2 shows a cross-section of the test 

section, including the placement of the Piezo patches on the aluminum blade. Some global blade 

dimensions are also included. 

 

 

Figure 2. Test section and blade geometry. 

 

2.3.  Numerical setup 

The work presented in this article tries to replicate the damping characteristics of the symmetric 

hydrofoil tested at NTNU. Table 1 lists a summary of the most important simulation settings used in 

this article. The 3 - dimensional numerical domain replicating the experimental rig is shown in figure 3. 

To ensure that the flow was fully developed before entering the measurement section, the inlet of the 

domain was extended such that a common entrance length criterion, > 10𝐷ℎ [16], was satisfied by a 

large margin. Fully developed flow was verified by testing the inlet turbulence intensity from 0 − 10%, 

with no difference in the levels at the blade. Similarly, the domain was extended downstream to avoid 

outlet conditions affecting the simulations, and to avoid backflow at the outlet, as the test section is 

diverging after the blade. 

 

 

Table 1. Numerical setup. 

Software 

Turbulence model  

Timestep 

Mesh 

Deflection amplitude 

Vibrational frequency 

Boundary conditions 

Flow velocity 

ANSYS CFX 

𝑘 − 𝜔 𝑆𝑆𝑇 

7.75e-6 [s] (256 timesteps per period) 

5 ⋅ 106 elements, all Hexahedral 

[2.5, 0.31, 0.05] [mm] 

504.37 [Hz] 

Pressure inlet, mass flow outlet 

2.5 m/s – 45 m/s 
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Figure 3. Numerical flow domain. 

A one-way coupling was used to obtain the damping. In this case, this means that the structural mode 

and corresponding natural frequency is calculated in advance. The CFD simulation is then performed 

with a pre-determined vibrating blade. Constant deflection amplitude is not possible in the experiments, 

but under the assumption that the damping is primarily dependent on the flow velocity, then it is a 

reasonable simplification in the numerics. ANSYS CFX was used in the simulations. A specified mass 

flow was prescribed at the outlet, a zero relative pressure condition at the inlet. The usual no slip 

condition was prescribed at all walls, and mesh motion forced on the blade surface. A modal analysis 

was performed in ANSYS Mechanical using the same geometry, with acoustic elements to account for 

the added mass and stiffness of the water. The first bending mode of the blade corresponds to bending 

of the trailing edge, and small deflection elsewhere. In a Francis turbine, this is the blade bending mode 

of interest. This mode shape and corresponding natural frequency was extracted and applied to the blade 

in CFX. In the simulations, the maximal deflection amplitude was prescribed in advance. The amplitude 

ranged from 1% to 0.02% of the cord length, i.e 2.5 mm - 0.05 mm as the chord length was 250 mm. A 

wide range of flow velocities was used, v = [2.5 m/s - 45 m/s] to identify any trends. The hydrodynamic 

damping was calculated by combining and discretizing equations (7) - (8), meaning that a normalized 

work was calculated for each timestep and summed over a full vibrational period, see equation (12). 

Every vibrational period was divided into 256 timesteps. To minimize the effect of the transient start-

up on the damping, equation 12 was applied on a periodic solution. 

 

𝜉 = ∑
− ∫ 𝑝 ⋅ 𝑢̇𝑛𝑑𝐴

𝐴

2𝜋𝑀𝜔2𝑞0
2 Δ𝑡

256

𝑘=1

(12) 

 

The mesh consists of hex elements only, created in ANSYS ICEM CFD. The total number of elements 

was about 5 million, where the damping was found to be independent of element number. Figure 4 

shows the mesh in the midplane around the blade, and the same mesh was used in all simulations. The 

Courant number (𝐶 =  𝑢𝑙𝑜𝑐𝑎𝑙∆𝑡∆𝑥−1 ) and the 𝑦+ values did therefore change as the free stream 

velocity was changed, however simulations at v = 30 m/s showed satisfactory values (𝐶𝑟𝑚𝑠  =
 0.31, 𝑦𝑚𝑎𝑥

+  =  2.3). At the trailing edge, where separation occurs, the 𝑦+ value was well below 1, and 

verifies the use of the k − ω SST turbulence model [17]. In the mentioned Courant number, 𝑢𝑙𝑜𝑐𝑎𝑙 

denotes the local flow velocity, ∆t the timestep, and ∆x the mesh size. In an explicit solver, this number 

should be < 1, however this is not necessary in the implicit CFX solver [18]. 
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Figure 4. Cross - sectional view of mesh around blade. 

3.  Results 

Figure 5 shows the damping ratio with respect to the flow velocity at three different, fixed amplitudes, 

[𝐴1, 𝐴2, 𝐴3] = [2.5, 0.31, 0.05] [mm]. The amplitudes are far apart, 𝐴1/𝐴2 = 8 and 𝐴2/𝐴3 = 6.2, however 

an almost identical behaviour is seen in the simulations using 𝐴2 and 𝐴3. This may indicate that there 

exists a range of deflections where the hydrodynamic damping factor is independent of the deflection 

amplitude. 

 

 

Figure 5. Effect of pre – determined deflection amplitude. 

 

The dependency on the flow velocity however, is not constant or even linear in the whole range. There 

seems to exist two regions of linear behavior, with different slope. This is supported by experimental 

results, shown in figure 6. The experimental results are plotted along with an error bar of two standard 

deviations, and for flow velocities above v = 10 m/s, there is a great match between the experiments and 

simulations. The large uncertainty at v = 28 m/s in the experiments is due to the onset of cavitation at 

higher flow velocities. In the experiments, the threshold of v ≈ 6 m/s, marked the lock-in region. Lock-

in is the phenomena when the shedding frequency in the flow locks with the natural frequency of the 

structure over a range of flow velocities, instead of linearly increasing as is reported by i.e. Brekke [19]. 

A narrow band included in figure 6 for visualization of this region. 
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Figure 6. Numerical and experimental damping characteristics. 

4.  Discussion 

Figure 5 indicates that there exists an amplitude range where the damping is independent of the 

deflection. Moreover, if this range includes the value 0.31 mm, which compared to the blade size is 

probably unrealistically high, then it can be assumed that the damping is deflection - independent in the 

whole normal operation range of the turbine. The damping is therefore only a function of the flow 

velocity, a massive simplification of the system. Similar experiences are seen in the gas turbine industry, 

however at larger deflections [20]. This result is also supporting the initial assumption of doing a one-

way coupled fluid - structure simulation. The second interesting finding is the different damping regions 

found in figure 6. It is clear that the damping characteristics before and after the lock-in region is 

different. It should be noted that the simulated and experimental data may not be compared directly, as 

the deflection amplitude is fixed in the simulations. This is not possible in the experiments. If, however, 

the assumption of amplitude-independent damping is true, then a comparison could be performed 

without introducing much error. The phase difference between forcing and vibration, as reviewed in 

section 2.1.1, is extracted to investigate the damping behaviour more thoroughly by equation (9). Figure 

7 (a) shows the phase difference as a function of the flow velocity. The phase difference is obtained by 

scaling the force on the blade (lift) to unity amplitude and comparing it with the forced vibration 

(sinusoidal function). The phase is then the spatial difference between the intersection with the x-axis, 

see small figure in figure 7 (a) or section 2.1.1. 

 

 

Figure 7. (a) Phase shift, lift whole blade, (b) Phase shift, lift trailing edge only. 
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We see a change in behaviour before and after the lock-in region here as well, however not as clear 

as in figure 6. Note that the phase difference is negative for all flow velocities. This indicates that the 

blade is damped, regardless of flow. An assumption in the derivation of equation (9), is that the velocity 

of the blade and the pressure on the blade is independent of the location on the hydrofoil. This 

assumption may not be valid for the mode shape we are studying in this article. To illustrate this, the 

phase difference using only the lift at the trailing edge (TE in small figure 7 (b)) is extracted and plotted 

in figure 7 (b). We see that the trailing edge part of the hydrofoil contributes to an unsteady (positive 

∆𝜙) hydrofoil vibration, although the trend across lock-in is inconclusive. 

Looking more closely at the two regions with different damping behaviour. The integrand in the work 

integral, (𝑝 ⋅ 𝑢̇𝑛), is composed of two parts. The normal velocity of the blade surface is equal in all 

simulations, and the pressure is therefore the dimensioning quantity in the integral. The forcing at the 

trailing edge of the blade is primarily the shedding of vortices. Bergan et al. [12] includes an analytical 

derivation of the phase shift in the shedding frequency across lock - in, and explains how this may 

increase the damping at high flow velocities. As was seen in figure 7 (b) the forcing at the trailing edge 

only was unstable, which actually contradicts this theory. Figure 7 (b) does not indicate that the shedding 

will dampen the vibration, rather the opposite. However, the assumptions used in deriving equation (9) 

may be too uncertain to draw any conclusions. Additionally, other factors may dominate the trailing 

edge shedding, i.e. the development of the pressure field when both the frequency and amplitude is pre-

determined in the simulations. A time-consuming two-way coupled simulation may provide further 

insight. The reason why the damping characteristics changes across the lock-in region is not yet found. 

One of the objectives of this numerical and experimental work is to obtain the damping at prototype 

flow velocities. In a Francis turbine, the relative velocity of the water may easily exceed v > 40 m/s. 

Due to the location of the test rig and the capacity of the pump, the fluid velocity in the experiments was 

limited to v ≈ 28 m/s before cavitation occurred. A simulation was therefore run at v = 45 m/s, seen in 

figure 6. We clearly see that the linear trend after the lock-in region is valid even for higher flow 

velocities. It is therefore reasonable to assume that one can extrapolate the experimental data to higher 

flow rates. 

 

5.  Conclusion 

This article shows that a numerical estimation of the hydrodynamic damping of a vibrating hydrofoil is 

possible. The correspondence with experimental results are very good, especially above the lock-in 

region. Below this region, the trend is similar, however the absolute values differ somewhat. Two 

damping regimes are identified; roughly constant before and linearly increasing after the lock-in region. 

The complete explanation of this phenomena is not known. The hydrodynamic damping is fairly low,   

ξ < 0.1, even for flow velocities realistic to Francis turbines. A one way-coupled simulation was 

performed, and the vibration amplitude is therefore chosen in advance. This assumption is supported by 

the result that the damping characteristics are independent of the deflection amplitude, as long as the 

deflections are small. For larger deflection, a two-way coupling is probably needed. 

 

6.  Further Work 

The overall goal of the research project is to understand the failure phenomenon in Francis turbines. A 

key difference from the present geometry and a turbine is the number of blades. In a full turbine, a phase 

difference in the vibration of two neighboring blades may facilitate negative damping. Therefore, the 

next iteration of the current study will include several blades to investigate this effect, and increase the 

similarity to an actual turbine. 
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