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Abstract. This paper gives a contribution to the vortex structure, vortex dynamics and the
tip clearance inertance as well as compliance of a cavitating pump. The related vortex structure
is reduced to the blade bound vortices, hub vortex and tip vortices only. At heavy part load
ϕ → 0, the tip vortices form a coaxial vortex ring of increasing strength. This vortex ring may
break down to several wall bound vortices at severe part load. The velocity potential of the
vortex ring is given by the Bessel series solution and by applying a limit value analysis. The
inertance of the gap flow is derived straight forward from this generic mathematical model of
an axial pump at deep part load. With the compliance due to cavitation, the natural frequency
of cavitation surge is discussed for the given generic mathematical model of the pump.

1. Introduction

The task of this paper is the determination of analytic expressions for the inertance L and
compliance C of the tip clearance flow of an axial pump. The work extends the research of
Brennen, 2016 [1] employing a recently developed vortex model of an axial turbomachine at
part load (cf. Pelz & Taubert, 2017 [2]). This model is recapped in the following. Figure 1a
shows the vortex model of the pump. The N bound vortices of strength Γ form the hub vortex
of strength NΓ and the tip vortices. At part load ϕ = U/(ΩR) → 0 (averaged velocity U , pipe
radius R, rotational speed of the pump Ω), the tip vortices feed a coaxial vortex ring, whose
radius equals the tip radius Rt. The strength Γt of this vortex ring is increasing in time until
a critical value is reached. It is suspected that this might reason a self-excited process like the
periodic cavity cloud separation (cf. Pelz & Taubert, 2017 [2]).
Figure 1b shows the streamlines derived from this model in the meridian plane for the ratio
β := Rt/R = 0.8 and a vortex strength of the ring vortex Γt of Γt = 10URt.
The vortex model is a coarse geometric model of the real flow which may serve gaining insights
into the dynamics of a cavitating pump extending the work of Brennen.
Figure 2b shows the lumped parameter model of the same pump. Brennen [1, 3] proposed a

more detailed model taking a main flow and a by-pass flow into account. Nevertheless, there
are indications that the tip clearance mainly influences the pressure build up and not so much
the internal leakage of the flow (cf. Karstadt & Pelz, 2012 [4]). This behaviour is different to
radial pumps where the internal leakage shall not be neglected. With respect to the inertance
of the flow, one has to keep in mind that most of the integral kinetic energy of the flow is due to
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Figure 1. a) generic vortex system of an axial pump at part load; b) streamlines in the meridian
plane (cf. Pelz & Taubert, 2017 [2]).
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Figure 2. a) Vortex model of an axial pump at part load [2]; b) lumped parameter model of
an axial pump.

the tip vortex flow. This is mainly because the tip vortex is located at a large radius Rt → R.
Hence, it is sufficient in a first approach to concentrate on the inertance of the tip vortex flow.
Indeed, this is the focus and novelty of this paper.

2. Linear perturbation expansion and dimensional analysis

Taking disturbances up to the first order into account, the usual perturbation approach is done:
the pressure on the suction and pressure side are expanded as p1(t) = p̄1+p̃1(t), p2(t) = p̄2+p̃2(t).
Similar the mass flow rate on both sides of the pump are perturbed: m1(t) = m̄ + m̃1(t),
m2(t) = m̄ + m̃2(t). Considering only linear terms in the expansion, the transform such
as m̃ = ℜ [m̂1 exp (iωt)] is made for all fluctuating quantities. The remaining equation for
perturbations to the power zero is the pump characteristic

p̄2 − p̄1 = ∆p(m̄). (1)
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The remaining equation for the linear perturbation is the transfer characteristics given by the
relation

[

P11 P12

P22 P21

] [

p̂1
m̂1

]

=

[

p̂2
m̂2

]

. (2)

The momentum and continuity equation solve the elements Pij of the dynamic transfer
characteristics. The momentum equation in three equivalent representations yields:

̺lπR2U̇2 = ˙̃m2l = İ = πR2(p̃1 − p̃2). (3)

U2 is the area averaged velocity at the outlet, l is the inductive length and İ the rate of change
of the axial momentum. With the inductive length l of the pump being determined as it will
be done in the following section, the inertance L of the pump is given by Ll/πR2. As an
orientation, the inductive length of a simple aperture in an unlimited plane wall of infinite
thickness is Rt ≈ π/4Rt [5]. For the low pressure LOX inducer in the Space Shuttle main
engine, Brennen derives the approximation L ≈ 10/Rt from measurements, i.e. the inductive
length of this inducer is nearly thirty times the tip radius: l = LπR2 ≈ 30Rt. The continuity
equation, ignoring cavitating mass flow gain, reads

̺Vε
np̄1

˙̃p1 − m̃1 + m̃2 = 0, (4)

where Vε is the cavity volume. This investigation ingnores the mass flow gain due to cavitation as
it mainly influences the damping and not the frequency itself. In the following, the abbreviation
for the hydraulic compliance C := ̺Vε/(np̄1) is used. The polytropic exponent n equals one for
a ”small” cavity and equals γ = 1.4 for a ”large” cavity [6]. With the abbreviations L and C
and the transformation into the frequency domain, we derive

(

1 + ω2LC
)

p̂1 − iωLm̂1 = p̂2, (5)

−iωCp̂1 + m̂1 = m̂2. (6)

The pressure shall be non-dimensionalyzed by the dynamic pressure ̺Ω2R2
t and the mass flow

rate by ̺ΩR3
t . Dividing the first equation by ̺Ω2R2

t and the second equation by ̺ΩR3
t we obtain

(

1 + ω2
+L+C+

)

p̂1+ − iω+L+m̂1+ = p̂2+, (7)

−iω+C+p̂1+ + m̂1+ = m̂2+. (8)

By inspection we gain the dimensionless products to be

ω+ :=
ω

Ω
, L+ := LRt =

lβ2

πRt
, C+ :=

CΩ2

Rt
=

1

n

Vε
R3

t

̺Ω2R2
t

p̄1
≈

2

n

Vε
R3

t

1

σ
for p̄1 ≫ pv. (9)

Hence, the pump compliance is inverse proportional to the cavitation number
σ := 2(p̄1 − pv)/(̺Ω

2R2
t ), assuming the vapour pressure is much smaller than the suction pres-

sure: p1 ≫ pv. This result is not new, but the dimensional analysis is indeed a nice affirmation.
We now employ the vortex model sketched in Figure 1 and 2: we assume the cavity volume Vε
to be the core of the coaxial vortex ring shown in Figure 1. If the core radius is δ = εRt/2, the
volume is given by Vε = π2R3

t ε
2/4. With this the dimensionless compliance yields

C+ =
(πε)2

2n

1

σ
. (10)

From the mentioned performance experiments of the low pressure LOX inducer in the Space
Shuttle main engine, Brennen derived the approximation C+ ≈ 0.05σ−1. Comparing this datum
with the result from equation (10) we estimate ε ≈ 0.1 ... 0.12 for 1 ≤ n ≤ γ = 1.4. Thus, the
core radius δ of the ring vortex ring is estimated to be

δ ≈ (0.05 ... 0.06)Rt. (11)
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3. Inertance of the pump derived from the velocity potential

In the coarse-graining limit model, the core of the vortex ring is seen as a washer-like vortex
sheet located at z = 0, Rt(1 − ε) < r < Rt. The tangential to the surface of the sheet is
W at z = 0+ and −W at z = 0−. Hence, the circulation of the vortex ring is Γt = 2εRtW .
Alternatively the strength of the vortex ring is given by the dimensionless product

τ :=
Γt

2RtU
= ε

W

U
. (12)

From Euler’s equation and the energy equation we derive the pump characteristics NΓΩ/2π =
(ΩRt)

2(1−ϕ/ϕ̂) and thus NΓΩ/2π → (ΩRt)
2 for ϕ→ 0 [2]. In our model, the N tip vortices of

strength Γ roll up in time t to form Γt = NΓΩt/2π [2]. With the ratio β := Rt/R = 1−s, where
s is the dimensionless tip clearance, there is an upper bound for τ . The pump performance
affects the upper bound to be Γt < (ΩRt)

2t at severe part load ϕ→ 0, yielding

τ :=
Γt

2RtU
=

1

2

Ωt

2π

NΓ

RtU
<

Ωt

2

β

ϕ
. (13)

The velocity potential φε of the coaxial vortex ring in a parallel flow is

φε(r, z)

UR
=
z

R
− 2τ

∞
∑

n=1

1

knJ
2
0 (kn)

J0

(

kn
r

R

)

exp

(

−kn
|z|

R

)

1

ε

β
∫

β(1−ε)

J1

(

kn
r

R

) r

R
d
( r

R

)

, (14)

as derived by Pelz & Taubert, 2017 [2]. The numbers kn for n = 1, ...,∞ are the roots of the
Bessel function: J1(kn) = 0. For εW = τU = const. and ε → 0 the integral simplifies to the
expression

lim
ε→0

1

ε

β
∫

β(1−ε)

J1

(

kn
r

R

) r

R
d
( r

R

)

= β2, J1(knβ) (15)

applying L’Hôpital’s rule. Hence, we have the singular solution for the coaxial ring vortex in
the tube with its flow potential

φε(r, z)

UR
→

φ(r, z)

UR
=
z

R
− 2τβ2

∞
∑

n=1

J1(knβ)

knJ
2
0 (kn)

J0

(

kn
r

R

)

exp

(

−kn
|z|

R

)

. (16)

The contour lines of the related Stokes stream function

ψ(r, z)

UR
= −

1

2

(

1−
r2

R2

)

+ 2τβ2
∞
∑

n=1

J1(knβ)

knJ2
0 (kn)

J1

(

kn
r

R

) r

R
exp

(

−kn
|z|

R

)

. (17)

are plotted in Figure 1b. With the result of equation (14) we are now set to derive an analytic
expression for the inertance L+ of the pump. Following Saffmann [7], the momentum used in
the momentum equation (3), İ = A(p̃1 − p̃2), yields

I = ̺

∫

SB

φε ~n · ~ez dSB = −4πR2̺

β
∫

β(1−ε)

φε(r, 0+)
r

R
d
( r

R

)

≈ 8πR3Uτ̺

∞
∑

n=1

J1(knβ)β
2

knJ2
0 (kn)

β
∫

β(1−ε)

J0

(

kn
r

R

) r

R
d
( r

R

)

(18)
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for small ε→ 0. The hydrodynamic impulse of the bound vorticity equals the virtual momentum
since the volume of the body is zero. The integral is approximated by

β
∫

β(1−ε)

J0

(

kn
r

R

) r

R
d
( r

R

)

≈ εβ2J0(knβ). (19)

Hence, the momentum yields

I = 8mRtετβ
3

∞
∑

n=1

J1(knβ)J0(knβ)

knJ2
0 (kn)

, (20)

with the mass flux m = ̺UπR2. From equation (3) we obtain ˙̃m2l = İ or with l = LπR2 =
L+πRt/β

2 the reduced inertance of the pump

Lred(β) :=
L+

ετ
=

8β5

π

∞
∑

n=1

J1(knβ)J0(knβ)

knJ2
0 (kn)

. (21)

The reduced inertance of the pump is plotted versus the dimensionless tip clearance s = 1 − β
in Figure 3 for 0 < s < 0.1. For small tip clearance s → 0 the reduced inertance tends to its
maximal value and decreases with increasing tip clearance.
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Figure 3. Reduced inertance Lred over tip clearance s, equation (21).

From result (21), the auto-oscillation frequency of the pump is determined to be

ωA

Ω
= (C+L+)

−1/2 =

(

1

π2
2n

Lred(s)

σ

τε3

)1/2

. (22)
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With the results of Brennen, i.e. ωA/Ω = (2σ)1/2, n ≈ 1, ε ≈ 0.1 the typical dimensionless
circulation is of the order

τ(s) ≈
1000

π2
1

Lred(s)
≈

100

Lred(s)
. (23)

The upper bound, equation (12), is due to the pump characteristics with the flow number
ϕ = U/RΩ.

4. Conclusion

The results derived within the framework of this paper highlight that an analytical approach
leads to the determination of both, inertance L and compliance C of the tip clearance flow of an
axial pump. For this case the influence of the tip vortex on the pressure build up is higher than
the internal leakage of the flow (cf. Karstadt & Pelz, 2012 [4]). Hence, these characteristics are
of great importance for calculating the transfer behavior of these types of turbomachines. With
this in mind, the investigation derives the auto-oscillation frequency of an axial pump.
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