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Abstract. The ingestion of large bodies in hydraulic turbines can produce blockage in the 

runner and/or the distributor, modifying the amplitude and uniformity of pressure pulsations 

and generating large unbalanced forces. These unwanted effects can lead to reduced efficiency 

and increased vibration levels, which can produce significant mechanical damage. In this work, 

we present a characterization of the effects of flow blockages due to ingested bodies on the 

rotor-stator interaction (RSI) of hydraulic turbines by means of computational fluid dynamics 

(CFD). For this, a reduced-scale model of a pump turbine was implemented using Ansys® 

CFX v16.2, and numerical simulations were run for normal operation and blockage operation. 

Studied blockages included rotor and distributor blockages. Pressure pulsations in rotor and 

distributor were recorded in order to characterize the effect of the blockage on the RSI of the 

machine. 

 

 

1. Introduction 

Hydraulic turbines are a fundamental part of the power generation sector. Their capacity to rapidly 

supply power to the electrical grid during peak consumption hours makes them important in terms of 

grid stabilization. The relieability of these machines depends on their capacity to start up at any 

moment, their efficiency predictability and the avoidance of unexpected stops. 

In general, large hydraulic turbines (except for high head turbines) are low rotating speed, rigid-shaft 

machines with low vibrating levels and reduced failure rates. Several studies have focused on the 

detection of mechanical damage [e.g. 1-3] or cavitation [e.g. 4-5] in these machines. However, in 

some cases, damage is generated by the ingestion of external bodies, rather than by failures in the 

machine itself. Hydraulic turbines suck in large amounts of water that can transport small particles, 

such as sand, and large bodies, such as large stones and logs. A body carried in the water will cause 

direct damage through impact or erosion and indirect damage through blockage [6]. 

If the ingested bodies are large enough (probably due to trash rack failure), they can cause the 

blockage of the runner or the distributor channels (see Figure 1). These blockages create unbalanced 

radial forces that increase the hydraulic excitation on the machine, thus they need to be detected before 

other parts of the machine suffer severe damage due to the increased vibration levels produced by 

these unbalances.  

In this work, we present a characterization of the effects of flow blockages due to ingested bodies on 

the rotor-stator interaction (RSI) of hydraulic turbines by means of computational fluid dynamics 

(CFD). For this, a reduced-scale model of a pump turbine was implemented using Ansys
®
 CFX v16.2, 

and numerical simulations were run for normal operation and blockage operation. Studied blockages 
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included rotor and distributor blockages. Pressure pulsations in rotor and distributor were recorded in 

order to characterize the effect of the blockage on the RSI of the machine. 

 

 

 

 

 

 

Figure 1. Typical blockage on a turbine runner (left) or distributor (right) [6]. 

 

2. Methodology 

2.1.  Case study 

The case study is a pump turbine turbine model (D = 500 mm) consisting of a runner with zb = 7 

blades and a distributor with zv = 16 guide and stay vanes, rotating at N = 600 rpm. For this case, the 

runner rotation frequency is ff = 10 Hz, the rotor blades frequency is fb = 70 Hz (observed in the 

inertial reference frame), and the distributor vanes frequency is fv = 160 Hz (observed in the rotating 

reference frame). These frequencies are determined from equations (1-3) (being n an arbitrary integer) 

[7]:   

 

𝑓𝑓 =
𝑁

60
               (1) 

 

𝑓𝑏 = 𝑛 · 𝑓𝑓 · 𝑧𝑏     (2) 

 

𝑓𝑣 = 𝑛 · 𝑓𝑓 · 𝑧𝑣     (3) 

 

The computational model generated consisted of three control volumes (distributor, rotor and draft 

tube) united by numerical interfaces (Figure 2). Both unobstructed and obstructed cases were created 

for the rotor and the distributor control volumes. For the obstructed rotor case, a partial blockage (25, 

50 and 75% canal blockage) was imposed in a rotor canal. For the obstructed distributor case partial 

(50%) and total (100%) blockage was imposed in a distributor canal.  

2.2.  Numerical procedure 

Unsteady state numerical simulations were carried out using Ansys
®
 CFX v16.2 CFD software, which 

simultaneously solves continuity and Navier-Stokes equation for a fluid in motion. SST k-ω 

turbulence model [8] was used to compute for the flow turbulent quantities. High-resolution schemes 

were used both for spatial and temporal discretization. The boundary conditions imposed consisted of 
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rotor rotational speed, flow rate and direction at the distributor inlet and atmospheric pressure at the 

draft tube outlet. Time step selected for the unsteady analysis corresponded to a 1º rotation of the 

runner. A sliding mesh approach was used in all simulations. 

 

In order to record the RSI pressure pulsation five monitoring points were set in the numerical model 

(Figure 2): two monitoring points in the distributor at each side of a stay vane, and three monitoring 

points in the rotor located in the center of a canal at 0,8D, 0,6D and 0,4D. The temporal signals 

obtained were processed using a Fast Fourier transform (FFT) to represent the results in the frequency 

domain. 

 

 
 

Figure 2. Computational model. 

 

3.  Results and discussion 

 

3.1. Pressure contours 

Figure 3 shows examples of the pressure contours obtained for the unobstructed turbine case and 

rotor/distribution blockage cases. 

As it can be observed, a blockage in the rotor or the distributor of the machine creates a high-pressure 

region in the distributor. The difference between these two blockage cases is that in the case of a 

blockage rotor this high-pressure region travels through the distributor at a rotation speed equal to the 
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runner speed, while in the case of an obstructed distributor the high-pressure region remains confined 

to the distributor canal blocked. 

 
 

Unobstructed turbine 50% obstructed rotor 100% obstructed distributor 

Figure 3. Pressure contours obtained for studied cases. 

 

3.2. Obstructed rotor analysis 

Figure 4 shows the pressure pulses obtained for different blockage sizes in a rotor canal, both for the 

inertial (distributor) and the moving (rotor) reference frame. A normalized time (t*) was chosen for 

representation purposes (tcycle = time for 1 full revolution = 0.1 s). 

It can be observed that for the inertial reference frame, the blockage amplifies the pressure pulse one 

time per rotation cycle. This is in concordance with the rotating high-pressure zone observed on the 

pressure contours. The amplitude of the pressure pulse is noticed to increase with blockage size.  

In the moving reference frame, the most noticeable fact is that pressure values within the rotor are 

higher than those registered for the unobstructed case. For this case, the amplitude of the pressure 

pulse increases with the blockage size. 

Figures 5 and 6 show the results obtained on the frequency domain. It can be noticed that while in the 

moving reference frame there is no substantial change in the excitation frequency, in the static 

reference frame the runner rotation frequency ff and its harmonics take preponderance over the rotor 

blades frequency fb. 

 

 

  
Inertial reference frame Moving reference frame 

Figure 4. Pressure pulse signals for the obstructed rotor case. 
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Unobstructed Rotor Obstructed rotor 

Figure 5. RSI frequencies in the static reference frame for obstructed rotor case. 

 

  
Unobstructed Rotor Obstructed rotor 

Figure 6. RSI frequencies in the rotating reference frame for obstructed rotor case. 

 

3.3. Obstructed distributor analysis 

Figure 7 shows the pressure pulses obtained for different blockage sizes in a distributor canal, both for 

the inertial (distributor) and the moving (rotor) reference frame. A normalized time was again chosen 

for representation purposes. 

It can be observed that for the moving reference frame, the blockage amplifies the pressure pulse one 

time per rotation cycle. The amplitude of the pressure pulse is noticed to increase with blockage size. 

For this case, in the inertial reference frame the pressure pulse is unaltered but the pressure values 

increase with blockage size. 

  
Inertial reference frame Moving reference frame 

Figure 7. Pressure pulse signals for the obstructed distributor case. 
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Unobstructed distributor Obstructed distributor 

Figure 8. RSI frequencies in the static reference frame for obstructed rotor case. 

 

  
Unobstructed distributor Obstructed distributor 

Figure 9. RSI frequencies in the rotating reference frame for obstructed rotor case. 

Figures 8 and 9 show the results obtained on the frequency domain. It can be noticed that while in the 

static reference frame there is no substantial change in the excitation frequency, in the moving 

reference frame the runner rotation frequency ff and its harmonics appear in the spectra. 

 

4.  Conclusions 

 

Extraneous bodies may enter the hydraulic piping of hydropower plants. Generally, these bodies are 

broken parts of trash racks and stones detached from civil works (tunnels). In other cases, they are 

aspirated if the trash rack is broken. 

Runner blockage reduces the efficiency of the turbine and generates an unbalanced radial hydraulic 

force. The effect of the blockage is considerable, as there is a significant increase in the pressure pulse 

even with a small blockage. 

Blockage in the distributor affects the hydraulic pulsations and leads to a significant increase in the 

blade passing the frequency amplitude. This means that the blockage increases the radial and axial 

dynamic forces on the runner.  
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