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Abstract. The condition where Indonesia is a tropical country and has two seasons where in 

April to September is the dry season while October to March is the rainy season where during 

the rainy season it causes flooding in several big cities in Indonesia so that puddles meet the road 

segments resulting in roads become damaged and perforated where the problem arises starting 

from a traffic accident, the exhaust gas CO2 on the vehicle does not burn completely, so that adds 

to air pollution. To answer this problem, we built a solution to make a platform to detect potholes 

and road monitoring. The research carried out the implementation of road observers that utilized 

IMU sensor that attached to the embedded system, send the location information to Smart 

Environment Monitoring and Analytics in Real Time System, is a monitoring platform system 

based on the Internet of Things, and Big Data. This system is an integration of several sensor 

devices connected to the embedded system and communication devices attached to the vehicle. 

Keywords: Vehicle as a Mobile Sensor Network, Flooding, Pothole Smart Environment 

Monitoring, IoT-Big Data. 

1. Introduction 
Transportation networks support economic activities by enabling the movement of goods and people. 

As long as there are severe weather events, transportation infrastructure can be directly or indirectly 

damaged, pose a threat to human safety, and cause significant disturbances related to the economic and 

social impacts of flooding. Especially the high rainfall is the main cause of disruption related to fur in 

the transportation sector. The existing approach to assessing the impact of road transport disruptions 

failed. The condition of hollow roads due to flooding in Indonesia is one of the causes of traffic accidents. 

Both the driver and road management who want to improve as soon as possible, there are several 

problems how to monitor hole conditions in all cities [1].  

One of the approaches to the detection of road damage is to use a manual that is humans and report 

to the central authority. Despite having the highest accuracy, It is assumed that human beings are fair 
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that judging that the road is a hole or not have required a lot of time, cost and difficulty in clustering 

data. Road level (International Roughness Index, IRI) is one factor/service function (functional 

performance) of the effectiveness of very high pavement damage to the driver's comfort (driving quality). 

Existing road quality or what have to be built must be by applicable standards and provisions. Main 

requirements a good road is strong, flat, airtight, durable and economical for a lifetime Potter. To fulfill 

these requirements, monitoring and periodic or online evaluation proper construction[2]. 

To answer these problems, in this study the implementation of integration with Road and 

Environmental Monitoring as a Supporter of road monitoring or Smart Environment Monitoring and 

Analytics in the Real-time System is a monitoring system based on the Internet of Things, Learning and 

Big Data. [3] This system is an integration of several sensor devices connected to embedded systems 

and communication devices that are attached to the vehicle. Data is sent to the data center and analyzed 

using Learning machine learning that can analyze the collected data. This system also has a visualization 

in the form of graphs, and map [4]. 

2. Related Works 

The Smart Environment System is currently developing a system to detect potholes and assess road 

conditions in real-time. Our solution is a mobile application that captures data on a car's movement from 

gyroscope and accelerometer sensors in the phone. Using this sensor data, we trained SVM models to 

classify road conditions with 93% accuracy and potholes with 92% accuracy, passing the base rate for 

both problems. As the user drives, the models use the sensor data to classify whether the road is good 

or bad [5]. 

The Big Data Platform is a data retrieval process that focuses on more and more on streaming from 

multiple sensor data. MapReduce algorithms and machine learning are used in Big Data analysis 

methods. In this study, we also researched the IoT-Big Data platform [6]. 

3. Proposed Method 

3.1.  IOT Architecture 

The system is built using a seven-layer model of IoT with grouping according to the role and function 

as in Table 1. The built systems are grouped according to the IoT reference model consisting of physical 

devices and controllers (1), connectivity (2), edge computing (3), data accumulation (4), data abstraction 

(5), application (6), collaboration and process (7). The overall system design is shown in Figure 1. 

3.2. Physical Devices Controller and Connectivity 

This section is the part used to detect road surface conditions using the gyro sensor, accelerometer, and 

GPS on the Head Unit. The application works starting from the sensor reading and sent to the server via 

the internet. Through 4G / 3G signals, this section is used to connect physical devices and controller 

layers with edge computing layer or internet in data transmission. The 4G modem is also used to connect 

between the Head Unit on layers the edge computing and cloud computing. The throughput of this 4G 

modem is about 20 Mbps. 

3.3. Edge Computing and Head Unit 

Sensor data is sent, then the data is received by the MQTT Broker which have been continued to other 

sub-systems. Figure 2 shows the edge computing or the head unit that has been attached to the vehicle 

and have to distribute data accelerometer, gyro and GPS to cloud computing database server (SEMAR). 
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Figure 1: Design System of VaaMSN. 

Table 1. IOT Architecture 

No Name Layer 

7 Collaboration & Processes  (website) 

6 Applications (Website, Grafana, 

influxDB and Mosca) 

5 Data Abstraction  

(MQTT Broker, Node JS) 

4 Data Accumulation  

(MongoDB) 

3 Edge computing  

(ProxmoxVE, MQTT Broker Node 

JS) 

2 Connectivity 

(4G/3G, wifi) 

1 Physical Devices and Controler 

(Raspberrypi,IMU,GPS) 

 

 

Figure 2: Physical Devices. 
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3.4. Accumulation data and Data abstraction 

This process store the data that have been sent to cloud computing to the NoSQL database, MongoDB, 

as the Big Data platform. The data are used as a training data to be analyzed so that it produces a model 

that will be used in the prediction process. This section serves to regulate the data flow that exists in 

cloud computing; there is a connector application that distributes data flow from MQTT to Big Data 

through the MongoDB RESTful API on the Big Data server. The next connector serves to distribute 

data to InfluxDB. Also, by using MQTT communication the data received can be displayed directly to 

public visualization in real time, with the aim of reducing delivery time [7]. 
 

Algorithm.Accumulation Data 

1 Begin: 

2 MQTT Connect 

3 Loop: 

4 Read Sensor Data 

5 Read sensor IMU 

6 Read GPS sensor 

7 Add Imu sensor data and GPS 

8 Send data to the server using MQTT (topic,data ) 

9 End. 

Scheme 1: Algorithm Accumulation Data 

3.5. Applications 

This section consists of machine learning, prediction and visualization processes, and IoT Cloud 

platform website dashboard results of cloud computing systems from the road surface damage 

classification system. 

3.5.1. Learning Proses and prediction 

The Machine Learning process is needed to build a classification model. This process is needed to 

provide a classification model before performing a real-time classification process. Thus, the level of 

confidence in the classification results can affect the level of accuracy of the model produced. 

In the training process of the dataset, we used Scikit-learn for conducting the training process of the 

dataset. Support Vector Machine[8] and Decision Tree are used as classification algorithms for this 

research. The best method between the two would be selected by comparing the results of the 

algorithm[9]. 

Support Vector Machine (SVM) used for regression and classification algorithm, this algorithm has 

been implemented for big data classification. In SVM, this classification is performed by giving a 

training vector y_i  ∈ R^n, i = 1, …, l, with an indicator vector y_i  ∈ R^l such that y_i  ∈ {1,-1} to 

solves the following primal optimization problem: 

min�,�,�
12 �� � + � � ��

�
���  

������� �� ∶   �!��"!#�$ + �$ ≥ 1 −  �� ,         ��  ≥ 0, ( = 1, … , +, (1) 
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Due to the high dimensional possibilities of the vector variables w, where C > 0 is the parameter of 

regularization and ϕ(x_i ) map xi to the higher dimension. We can solve the following double problem:\ min,
12 -� ., + ��- ������� ��   �- = 0                          0 ≤  -� ≤  �.         ( = 1, … . , +, (2) 

After problem (2) is solved, using the primal-dual relationship, the optimal w satisfies: 

� =   �  �-�"!#�$1
���  (3) 

The decision function of the classification becomes 

2!��"!#$ + �$ = �(34 5�  �-�6!#� , #$ + � 7
��� 8 (4 

The actual SVM can be classified into two classes. A correct multiclass method is some classification 

problems. In this case, combine several binary classifiers with two methods. The first method is 'One on 

one' means applying a comparison of inter-class pairs. The second method is 'One against the other' 

means comparing one class with all other classes. 

Decision trees are machine learning algorithms that utilize tree decisions such as impact probabilities, 

which involve the results of events, resource costs, and utilities. The Decision Tree is one of the best 

classifiers when considering classification accuracy. This algorithm studies the classification function 

which includes the dependent attribute (variable) given by the attribute value (input) (variable). 

Some of the most popular decision tree algorithms are C4.5, CART, and Naive Bayes Tree. This 

research uses CART which stands for Classification and Regression Trees. CART analysis is a form of 

binary recursive partition and can handle numerical and categorical variables. The error rate of the data 

received can be measured by CART, it can also build a binary tree where each internal node produces 

two classes for the attributes received. The way in which trees are built by selecting attributes recursively 

uses the attributes they have the lowest Gini Index. Attribute with the lowest Gini Index value is obtained 

by calculating the Gini Index value in each attribute. Gini Index is calculated based on the formula 

below, where the probability of the (9: the class for �  target classes of a given attribute is ;(. Meanwhile, ;( is the probability of class (. 
<(4( =   1 − �!;�$=  >

���  

 

(5) 

The accuracy of the classifier algorithm is evaluated by dividing the dataset into two subsets of about 

70% for the training set and the remaining 30% for the test set. The training set is intended to build a 

classification model. While the performance measurement of the classification model is built using a 

test set. This method can be called the hold-out method. This learning procedure is shown in algorithm  

3.5.2. Visualization and Dashboard  

Figure 3 is a web visualization that represents the gyro value and visualizes a pothole map. In Figure 3a, 

graphical form displays surface quality parameter values based on the time taken. In the view provided, 

data are retrieved for the last 1 minute, 5 minutes, and all data shares the image at the bottom which 

shows all road quality data that can be obtained. The graph was made using the Highchart library. 

Figure 3b shows the visualization of data on the map. Maps are built using the Leaflet.js library; 

there are markers that represent the location of data collection. On the sidebar there is a panel that shows 

the description of the marker color, the color of the marker is based on the color of the road quality 

monitor used by the government, the marker color represents the condition of the road by the PSI rules. 

The next panel shows the latest data on the quality of roads detected. 



IISS 2018

IOP Conf. Series: Earth and Environmental Science 239 (2019) 012034

IOP Publishing

doi:10.1088/1755-1315/239/1/012034

6

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 3: (a) Display of Akselero Graph Visualization and (b) Map Visualization Display 

3.6. Collaboration and Processes 

This section serves to provide a feedback to the users by providing information about parameters in the 

data derived from measurement data obtained. The system will send a notification if there are pothole 

and bumps. The notification about holes and protrusions in a visual form is a good feedback for the 

government to immediately repair the hole, and for the riders to avoid damaged roads. 

4. Result and Discussion 
Learning system has been applied to determine the accuracy of the proposed machine learning. First, 

data retrieval is done to build the data set from the machine learning. 

4.1. Learning data retrieval 

4.1.1. Data collection Pothole 

Data retrieval set is done by retrieving the pothole data by attaching the device to the running car holder. 

Retrieving data sets is carried out using different vehicles at different speeds . Pothole data is obtained 

using Avanza car with a speed of 20 km/h, 40 km/h, and 50 km/h, and running location on the road 

Kertajaya Timur V and Jalan Gebang Lor.  

 

Figure 4: Pothole Accelerometer Z-Axis 

4.1.2. Data collection set Bump 

Bump testing is done to determine the characteristics of the data. Testing is done by taking the data set 

on the vehicle running and passing through the bump. Retrieval of data sets using different vehicles at 

different speeds is the testing environment for retrieving data set machine learning. Bump data is 

obtained using Avanza car with a speed of 20 km/h, 40 km/h, and 50 km/h, and running location on the 

road Kertajaya Timur V and Jalan Gebang Lor. 
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Figure 5: Bump Accelerometer Z-Axis 

4.2. Results of Confusion Matrix 

The confusion matrix is a method that is usually used to calculate accuracy in the concept of data mining. 

This formula calculates with three outputs, namely recall, precision, accuracy and error rate. In this test 

is done to test a machine learning algorithm that has been made. From the table of the confusion, matrix 

results can be seen errors from the predicted levels of the SVM and DT systems. 

 

 
(a) 

 
(b) 

Figure 6: (a) Confusion Matrix from SVM and (b) Confusion Matrix from D3 

The classification of SVM and DT in the calculation using Confusion Matrix shows that SVM has 

an accuracy rate of 98% with an error rate of 10 hole holes and eight bumps, while DT has an error value 

of 4 for holes and 1 for bump and eight bump readings and 11 holes. 

Table 2. Classification Result 

Features Algorithm MSE 

 Pothole and Bump Support Vector Machine 0.06206896551724138 

 Decision Tree 0.05517241379310345 

4.3. Classification Result 

Our second experiment measured the acceleration of the classification results. To measure acceleration, 

we calculate the accuracy and MSE (Mean Squared Error). 
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5. Conclusions 

In this study, we built vehicles as a mobile sensor network (VaaMSN) and intelligent and analytic 

pothole detection in Real-Time Systems (SEMAR) for pothole monitoring systems. VaaMSN consists 

of modem accelerometer, gyro, GPS, 4G WiFI which is connected to the Head Unit and connected to 

the vehicle. Data from VaaMSN is sent via the MQTT protocol to the Big Data platform and analyzed 

by decision trees (DT) and machine support vector algorithms (SVM). Data is sent and visualized in 

real time. We conducted experiments by combining the functions of analytic data using the SVM Linear 

algorithm and also the decision tree algorithm. MSE values from the decision tree can be 6.2% and 5.5% 

for the SVM algorithm. 
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