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Abstract. In this paper, we will study the basic flow and the principle of state-of-the-art object 
detection technique (i.e. Faster R-CNN) and improve it further with the inclusion of two 
strategies into it. Firstly, we propose a multi-layer features merging strategy by using a 
concatenation layer. Secondly, we introduce a contextual learning scheme for Faster R-CNN. 
Previously, Faster R-CNN just uses regional features. Contextual features are added with the 
regional features for the classification and detection task. Our improvement on Faster R-CNN 
shows promising results. We call our improved Faster R-CNN network as ID-CNN (Intelligent 
Detection Using Convolutional Neural Network) as its detection accuracy is better. Therefore, 
we call it as an intelligent detector. We use a deep VGG-16 model as our base model, as Faster 
R-CNN did. We evaluated our ID-CNN on Pascal VOC public datasets. Experimental results 
show that ID-CNN can effectively improve the object detection average precision to some 
extent. On VOC 2007 and 2012, we achieved a mean average precision (mAP) of 74.7% and 
71.9%, respectively. ID-CNN is also end-to-end trainable with the same alternating fine-tuning 
optimization scheme of Faster R-CNN. Finally, we compared ID-CNN with Faster R-CNN on 
ImageNet object detection dataset and we achieved mAP of 48.1% compared with 46.2% for 
Faster R-CNN. 

1. Introduction 
Leveraging GPUs, the research on CNNs (like alexnet [12]) has been emerged swiftly and achieved 
state of- the-art results on image classification task. State-of-the-art object detection algorithms 
depends on the region proposal based methods [1],[2],[3],[4] and on the methods like SSD [8] and 
YOLO [5], that are feedforward in a single pass. SSD and YOLO, both deals detection as a regression 
problem but have less accuracy compared with the Faster R-CNN [3]. Region-based CNN [1] is great 
to hypothesize the object’s location. Works on SPPnet [7] and Fast R-CNN [2], achieves nearly real-
time rates when ignoring the time spent on region proposals. But the bottleneck of external region 
proposals was there, like selective search (SS) [4] which greedily merges super-pixels based on low-
level features. So, it is computationally expensive and also is of slower magnitude. 

Edge boxes [6] provides a better tradeoff between proposal’s quality and the speed (at ~0.2s per 
image). However, still the region proposal step consumes as much running time as the detection 
network itself. Therefore, RPN (region proposal network) based network is combined with Fast R-
CNN [2] to form a Faster R-CNN [3]. Faster R-CNN makes the whole object detection pipeline an 
end-to-end process. With a simple alternating optimization algorithm, RPN [3] and the Fast R-CNN [2] 
can be trained end-to-end to share convolutional features while exempting the use of external region 
proposals [4]. RPN is constructed by adding additional two layers on top of a Fast R-CNN [2] 
detection network. First layer converts each convolutional map position into a short feature vector (e.g. 
512-d for VGG-16 in [3] and 640-d in our case). Second layer outputs an object-ness score and 
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regressed bounding-box offsets at each convolutional map position for k region proposals 
corresponding to various scales and aspect ratios at that location (k=9 as used in [3]). Faster R-CNN 
achieved great results in object detection pipeline with mAP of 69.9% than the great baseline of (SS) 
[4] with Fast R-CNN [2] with mAP of 66.9% on VOC 2007 dataset. However, space for improvement 
is still there in average precision. 

In this paper, we show that with the slight modifications in the network of Faster R-CNN [3], an 
elegant and an effective result could be achieved.  Our observations found that the low and the high-
level features of the convolutional layers of a CNN are complementary to each other in a way as high-
level features having semantic features are actually formed on low-level features. Also, the capability 
of localization in low-level features and the semantic information in the high-level features can be 
fused together [25]. Keeping this in mind, we proposed a multi-layer features merging strategy. We 
down-sample the low-level features to the same size of the high-level features by using convolution 
with a bottleneck structure. After that, we merge them together with the help of a concatenation layer. 
This lets for a more effective feature representation of the original image. Knowing the fact, that the 
Faster R-CNN [3] only uses regional features to classify and locate an object, we introduced a context-
based learning structure to it. The contextual features are extracted from the image’s convolution 
feature maps by using the context pooling layer, and then we merge it with the regional features for 
the classification and localization task of an image. 

With the inclusion of multi-layer features merger and the contextual learning strategy, the accuracy 
for the detection and classification of RPN-based network with Fast R-CNN architecture has been 
improved. We evaluated our method on Pascal VOC 2007 [15] and VOC 2012 datasets, which shows 
an impressive mAP of 74.7% and 71.9%, respectively. Besides Pascal, we compared ID-CNN with 
Faster R-CNN on the ImageNet object detection dataset (ILSVRC) [24] and achieved a mAP of 48.1% 
compared with mAP of 46.2% for Faster R-CNN. 

2. Literature Review 
Outdated methods for object detection involved using a block-wise orientation of histogram (e.g. HOG 
[11] or SIFT [14]) features which could not attain high accuracy in standard datasets (e.g. PASCAL 
VOC 2007). A couple decades ago, CNN was implemented when LeNet architecture [16] was used for 
recognizing digits. That was the first successful CNN application that was used in practice. Then, a 
hibernation period was there for CNN as the computers were not fast yet. CNNs were rejuvenated with 
the work of Alexnet [12] for ILSVRC challenge to classify objects, and that paved the way for deeper 
networks for the classification tasks. By this time, GPUs were around. 

Overfeat [10] (a class specific regression) method uses sliding window approach to classify and 
localize the object. In Overfeat, a fully-connected layer is trained to predict the box coordinates for the 
localization task which presumes a single object. Then FC layer turns into a convolution layer for 
detecting multiple class-specific objects. For R-CNN [2] object detection, Multi-box methods [9],[17] 
generates region proposals from a network whose last fully connected (FC) layer simultaneously 
predicts multiple number of boxes for being an object. 

The goal of generating region proposals is to create a relatively small set of bounding boxes for the 
candidate to cover all objects in an image. These proposals are most commonly used with the complex 
and expensive classifiers to allow efficient object detection [1],[2],[4]. Faster R-CNN [3] is a two-
staged cascade architecture, consisting of class-agnostic proposals (RPN) and a class-specific detector 
(Fast R-CNN). RPNs are like fully connected network that they can be trained end-to-end for the task 
of generating proposals. To combine RPN with fast R-CNN [2], an alternating fine-tuning 
optimization scheme is used. This fine-tuning scheme converges quickly and produces a unified 
network where RPN and Fast R-CNN share same convolution features. 
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Table 1. Different object detection architectures. ‘+’ denotes employed while ‘-’ denotes not 
considered. Note that, R-CNN [1] and SPPnet [7] are not end-end trainable with a multi-task loss 

whereas other architectures are based on multi-task joint training. 

Framework Proposal Multi-
scale 

Learning 
Method 

End-to-
End 

Loss Function 

R-CNN Selective 
Search 

- SGD, BP - Hinge Loss, B. box reg. 

SPPnet Edge Boxes + SGD - Hinge Loss, B. box reg. 
Fast R-
CNN 

Selective 
Search 

+ SGD - Log Loss, B. box reg. 

Faster R-
CNN 

RPN + SGD + Log Loss, B. box reg. 

SSD - - SGD + Softmax loss + B. box reg. 
Yolo - - SGD + Sum-Squared error loss + B. 

box reg. + Obj. Conf. + 
Background Conf. 

 
RPNs have so-called translation invariant anchors unlike the Multi-box method’s [17] anchors. 

Anchors of RPN uses 3 scales for box area of 1282, 2562, 5122 pixels with 3 aspect ratios of 1:1, 1:2, 
2:1. Therefore, with 3 scales and 3 aspect ratios the anchors at each sliding window position on the 
feature map yields k=9. On the other hand, Multi-box [17] uses k-means to generate 800 anchors, 
which are not translation invariant. It requires a (4+1)×800 dimensional output layer, whereas RPN-
based method requires a (4+2)×9 dimensional output layer. RPN-based proposal layers have fewer 
parameters compared with Multi-box, and thus have less risk of overfitting on small datasets 
comparatively like PASCAL VOC [15]. Anchors with an IoU (Intersection over Union) greater than 
0.7 and the highest IoU overlap with a ground-truth box considered as positive anchors and whereas 
IOU less than 0.3 considered to be as negative anchors. 50% ratio is being used for positive and 
negative anchors in a mini-batch. For training RPN, a binary class label of being an object or not is 
assigned to each anchor. 

3. Proposed Method 
In order to improve the performance of Faster R-CNN, the proposed network ID-CNN consists of 
multi-layer features merging scheme and context-based learning scheme. We will take VGG-16 as our 
base model as [3] did and improves the feature extraction of it, as it plays a vital role for the 
classification and detection tasks. For an easier example, we take 224×224 as an input image to 
describe our proposed method. The two efficient inclusions to [3] are: 
 

1
2 3

4
5

RPN

Concat Feature 
Map

Context 
Pooling

ROI 
Pooling Conv5

Context 
features

Softmax

B.Box

Feature VectorConv

Avg. 
Pooling 

Multi-layer features

Concatenation

VGG-16

Figure 1. Intelligent Detection using Convolutional Neural Network (ID-CNN). The overall improved 
version of Faster R-CNN. 

3.1. Multi-Layer Features Merging 
With observations, we found that low and high-level features of a CNN are complementary to each 
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other. As high-level features having complex and semantic features are actually formed on low-level 
features that contains basic information like edges, curves, lines and texture etc. In addition, the 
capability of localization in low-level features and the semantic information in the high-level features 
can be fused together [25] as we also need to localize the object in the image as well. Therefore, multi-
level merging strategy bridges the gap between high and low-level features. In this scheme, we merge 
low-level features with the high-level features by concatenation. As from papers [18] and [19], they 
use deconvolution to visualize the features of different layers in a network. As a reference from [19], it 
can be seen the role played by the features from different layers of a CNN. The shallow layers keeps 
most details of the input image, also small-structured objects barely have any response in the deeper 
layers. Multiple layers fusion is a great way to boost the performance of detection as CMS-RCNN [20] 
did. 

High-level feature maps loses many important low-level features while undergoing through several 
down-samplings. By this, feature maps becomes more abstract to the input image as CNN always 
shrinks its feature maps by using max pooling operation after convolution layer in order to reduce the 
number of parameters in the network. Which means, one pixel in the feature map corresponds to 
several pixels in the input image. Therefore, the output feature maps from different convolution layers 
have different sizes. Due to a down-sampling, the size of the feature maps of two adjacent convolution 
layers are generally twice the same. In order to merge these feature maps, it is necessary to adjust the 
output feature maps to the same size of each other. That is to say, the large feature maps needs to be 
down-sampled to the same size of the smaller ones. We down-sample the output of conv3_3 and 
merge it with the output of conv4_3 by using concatenation to compare their features. 
 

Convolution

Conv3 Conv4

28×28×128

56×56×256

1×1, 128, Stride 2
3×3, 128, Padding 1
1×1, 128

28×28×512

224×224 RPN

ROI Pooling
Concatenation

Multi-layer 
feature merging

28×28×640
down-sampling

Figure 2. Multi-Layer Features Merging to merge Conv3_3 and Conv4_3 via a Bottleneck structure 
 

A convolution layer with a stride of 2 is being used to down-sample the conv3_3 (i.e. from 
56×56×256 to 28×28×128) with carefully chosen 128 filters. On the other hand, conv4_3 is 
28×28×512 as shown in Fig. 2. If not maintained the dimension, the output of conv3_3 would increase 
the feature depth of the concatenation layer and hence the parameters as well after merging with 
conv4_3. Therefore, to improve the expression ability of the merged features and to reduce the feature 
depth (dimension) we would use a “Bottleneck structure” like the one used in GoogleNet [21]. As 
from [21] we come to know, the use of convolution involves a lot of parameters which makes the 
network computationally expensive. On the other hand, the problem becomes more pronounce when 
pooling operation is added as it preserves the feature depth (dimension) which means the total feature 
depth after concatenation can only grow. Hence, a bottleneck structure can be applied before the 
convolution operation to reduce the parameters and the 1×1 convolution in bottleneck also helps to 
reduce the feature depth. The third layer of Bottleneck does not double the number of convolution 
filters. Hence, the number of newly introduced parameters can be maintained at a lower level. Also, 
merged features’ expression ability would be improved and the number of feature maps of low and 
high-level would be of ratio (1:4). Since, the high-level features still plays a major role. 

After that, we insert RPN between concatenation and the conv5 of the model to generate regions of 
interest for the input image. The RPN proposes 200-300 proposals based on the ignorance of all cross-
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boundary anchors and applying NMS on the proposal regions based on their class score. For a typical 
input image of size e.g. (224×224), the output feature map can be obtained after the first four 
convolutional blocks of a deeper network like VGG16 to generate regions of interest from RPN. The 
candidate regions are then projected onto the concatenation layer’s output feature map in a certain 
proportion. Since, VGG16 has gone under three down-sampling operations from conv1 to conv4, the 
feature map is reduced by 1/8 times and hence the projection ratio is also 1/8th of the original image. 
The projected regions are then pass through ROI Pooling layer to become of certain size. Here, conv5 
of VGG16 model is used to extract these local features of the candidate regions from ROI pooling. 
The size of which is 7×7 whereas the input of 5th convolution layer is 14×14. This is because, the 5th 
convolution layer begins with conv5_1 and then after pooling with a stride of 2 it would be down-
sampled to give 7×7 at the output. 

3.2. Context-Based Learning 
In order to improve the accuracy for classification and localization of our network, then we want our 
network to know the surroundings within an image better. For this, context information of the whole 
image is required. The global context can be useful when making predictions for local image regions. 
The context can be regarded as a background information of the whole image. At present Faster R-
CNN only utilizes the features from the local regions of interest rather than the context information of 
the whole image. In our network contextual learning is possible. The features we get from multi-layer 
features merging scheme can paved way for contextual information of the image. The context of 
concatenation layer’s output feature map is pooled in the same way as that of ROI pooling is done. 
The only difference is, that the context is pooled with the feature map of the entire image as the 
regions of interest. Here, we divide it by 14×14 grids and pool the maximum value in each grid to get 
a fixed size of 14×14. 

In the context environment, again we use a bottleneck structure to get better expression ability for 
the output features and to make them to be in a certain proportion (e.g. 1/4), as shown in Fig. 3. With 
128 filters to maintain its proportion the convolutions of 1×1 are applied with stride of 2 whereas, 3×3 
with a pad of 1 and then the final 1×1 to extract the context features while reducing its size to 7×7. The 
feature maps extracted by the convolution operation can be regarded as the context features. Then, we 
merge these context features with the regional features (conv5) by concatenation to give our network 
the contextual information. 
 

RPN

28×28×64028×28×640

Context 
Pooling

Concat Feature 
Map

ROI Pooling Conv5

Context 
Features

Multi-Layer 
Features Concatenation

Feature Vector

7×7×128

7×7×512

1×1, 128, SPride 2
3×3, 128, PMd 1
1×1, 128

7×7×640

Avg. 
Pooling

640×1

14×14×640

14×14×640

 
Figure 3. A comprehensive example-based diagram to let you know the insight workflow of Context-

Based Learning Structure 
 

Finally, the concatenation result is average pooled out with a 7×7 pool. This global average pooling 
(GAP) [23] layer helps to minimize the overfitting by reducing the total number of parameters in our 
model. It reduces the dimension to 1×1×640. That means, it generates one feature map for each 
corresponding category of the classification task in the last layer. It allows us to have the input image 
of any size. After-words, it mapped to a feature vector by fully connected layers. The network has two 
output vectors: softmax probabilities for classification with object-ness score and per class based 
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bounding-box regression offsets for the detection of box coordinates.

4.  Loss Functions 
An objective function is to be minimized and the RPN loss from [3] for an image is as follows: 

 * * *1 1({ },{ }) ( , ) ( , )i i cls i i i reg i ii i
cls reg

L p t L p p p L t t
N N

l= Σ + Σ   (1) 

Here, i is the index for an anchor in a mini-batch, pi is the predicted probability of anchor i being an 
object whereas, pi* is ground-truth label (1 for positive anchor, 0 for negative). ti and ti* represents 
predicted and ground-truth boxes’ 4 parameterized coordinates for anchor i. Lcls is a classification’s 
log loss (Softmax) over two classes (object or not object) and Lreg (ti, ti*) is a (smooth L1) regression 
loss from [2]. Both terms are normalized with Ncls and Nreg whereas λ is a balancing weight. After 
minimizing RPN loss, following multi-task loss in Fast R-CNN [2] is to be minimized: 

 ( , , , ) ( , ) [ 1] ( , )u u
cls locL p u t v L p u u L t vl= + ≥   (2) 

Here, p and u are predicted class and true class scores, respectively. Whereas, tu is true box 
coordinates and v is predicted box coordinates. The first term (Lcls) represents a log loss (softmax) for 
classification and the second term (Lloc) represents a regression loss (smooth L1). The term [u ≥ 1] 
evaluates to 1 when u ≥ 1 and 0 otherwise. The hyper parameter λ controls the balance between the 
two task losses of Fast R-CNN. For bounding-box regression, the parameterization of the four 
coordinates are taken from R-CNN [1]. 
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  (3) 

Here, x and y are the center coordinates of the box. Whereas, w and h are width and height, 
respectively. Variables x, xa and x* are for the predicted, anchor and ground-truth boxes, respectively 
(likewise for y, w and h). It is like a bounding-box regression from an anchor box to a nearby ground-
truth box. 

The overall multi-task loss for this network is the sum of RPN and Fast R-CNN loss. RPN and Fast 
R-CNN needs to be trained jointly with four losses (two each for RPN’s proposals and for Fast R-
CNN’s detection). An algorithm is introduce in [3] that allows the sharing of convolution layers 
between the RPN and Fast R-CNN. From [3], we used a four step training algorithm to learn for 
shared convolution features via alternating fine-tuning optimization scheme. We refer readers to [3] 
for more details about the alternating fine-tuning optimization algorithm. 

5. Optimization of Parameters 
RPN, that was basically implemented as a fully convolutional network in [22] can be trained end-to-
end by back-propagation and stochastic gradient descent (SGD). All new layers are randomly 
initialized by drawing weights from a zero-mean Gaussian distribution of N(0,0.012). All other layers 
(i.e. the shared convolution layers) are initialized by pre-training a model for ImageNet classification 
[14]. We use a learning rate of 0.001 for first 50k mini-batches and then reduced it to 0.0001 for the 
next 20k mini-batches on the dataset. Instead, of 60k and 20k as used in the literature of [3]. Weight 
decay of 0.0005 and a momentum of 0.9 is being used with caffe framework for the implementation. 

Our method also provides an end-to-end learning environment like in [3] even after the inclusion of 
both multi-layer features merging and the contextual learning strategies into it. For the fine-tuning of 
parameters, the parameters of conv1 and conv2 of VGG16 are fixed. Whereas, the parameters from 
conv3 to conv5 and the FC layers are fine-tuned. It is feasible to fix the parameters of first few layers 
and adjust only the latter ones when the network is large like VGG16. As the characteristics features 
of first few layers have certain generality and they tend to change less. 
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6. Experiments and Results 
We evaluated our ID-CNN on PASCAL VOC 2007 [15], VOC 2012 and on ImageNet ILSVRC [24] 
dataset. PASCAL dataset consists of (~5k trainval images) and (~5k test images) for over 20 object 
categories. For the ImageNet pre-trained network, we use the VGG-16 model [13] that has 13 
convolution layers and 3 FC layers. The purpose of using the same model as used by [3] is to make a 
fair comparison. Faster R-CNN is our baseline. 

Table 2 shows the effects of Multi-layer features merging strategy on object detection results using 
VOC 2007 test set and 07+12 (union set of VOC 2007 trainval and VOC 2012 trainval) as training set. 
In 1st experiment, we use Faster R-CNN for training and testing. In 2nd, we use max pooling layer (MP) 
for the down-sampling of conv3_3 and then merged its output feature maps with the output feature 
maps of conv4_3. In third experiment, convolution layer (MC) is use for the down-sampling. And in 
our fourth experiment, convolution layer (MC) with a bottleneck structure (MB) is use for down-
sampling. The result of 2nd experiment that uses max pooling is lower than that of 1st. Contrary, the 
results of experiments 3rd and 4th are fairly increased by 0.5% and 0.9%, respectively than that from 
baseline. 

 
Table 2. Detection results with different Multi-layer features Merging Strategies 

Experiment 
No. 

Network Model Training Set Test Set mAP (%) 

1 Baseline VGG-16 07+12 07 73.2 
2 Baseline + MP VGG-16 07+12 07 73.0 
3 Baseline + MC VGG-16 07+12 07 73.7 
4 Baseline + MC + 

MB 
VGG-16 07+12 07 74.1 

 
Table 3 shows the effects of context-based learning strategy on object detection results. Here again, 

we will try different ways to down-sample our context features. So that, in a better way features’ 
expression ability would be possible. First experiment uses baseline network for training and testing. 
Second experiment uses max pooling layer (CP) for the down-sampling of context features. As 
happened before, with the use of pooling operation our detection accuracy sinks. In third experiment, 
convolution layer (CC) is used for down-sampling and a progress can be seen of 0.4%. In fourth one, 
convolution layer (CC) with a bottleneck structure (CB) is used for down-sampling and a clear 0.6% 
improvement is made here by utilizing the contextual image features.
 

Table 3. Detection results with different Context-Based learning strategies 

Experiment No. Network Model Training Set Test Set mAP (%) 
1 Baseline VGG-16 07+12 07 73.2 
2 Baseline + CP VGG-16 07+12 07 72.9 
3 Baseline + CC VGG-16 07+12 07 73.6 
4 Baseline + CC + 

CB 
VGG-16 07+12 07 73.8 

 
In order to test the overall improved performance, we add this contextual learning strategy with our 

multi-layer features merging strategy. The experimental result is shown in the Table 4. It gives us the 
final result of our ID-CNN network that includes both strategies into Faster R-CNN and gives us an 
impressive 1.5% of overall improvement.
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Table 4. Detection results on Pascal VOC 2007 test set 

Network Model Training 
Set 

Test Set mAP 
(%) 

ID-CNN VGG-16 07+12 07 74.7 
 

Table 5 shows the overall performance of our ID-CNN network compared with the state-of-the-art 
object detection network [3]. Detection results are on VOC 2012 test set and the networks are trained 
on 07++12 (union set of VOC 2007 trainval + test and VOC 2012 trainval).
 

Table 5. Detection results on Pascal VOC 2012 test set 

Network Model Training Set Test Set mAP (%) 
Baseline VGG-16 07++12 12 70.4 
ID-CNN VGG-16 07++12 12 71.9 

 

 
                                       (a)                                                                                            (b) 

Figure 4. (a): A ROC-based analysis between Faster R-CNN with our ID-CNN and clearly it 
performs better than its predecessors. (b): Graphical representation of our experiments with different 

proposed schemes as mentioned in Tables from 2-4, respectively. 
 

Besides PASCAL datasets, we compared ID-CNN with Faster R-CNN on ImageNet object 
detection dataset [24]. It has 1000 categories with over 1.28 million training, 100,000 test and 50,000 
validation images. We divide the validation set into two parts (val1 and val2). For training, we use the 
training set plus val1. Whereas, val2 for testing. 
 

Table 6: Object detection results on ILSVRC 

Method Model Training Set Test 
Set 

mAP (%) 

Faster R-CNN VGG-
16 

Train+val1 val2 46.2 

OUR1 VGG-
16 

Train+val1 val2 47.3 

OUR2 VGG-
16 

Train+val1 val2 48.1 

 
“OUR1” represents the inclusion of multi-layer features merging strategy. Whereas, “OUR2” 

represents the inclusion of both multi-layer features merging and the contextual learning. . The 
average detection accuracy of VGG-16 with multi-layer strategy is improved by 1.1%. Then, we add 
the contextual learning strategy to the experiment of “OUR1” and it add-ons 0.8% additional 
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improvement. The overall mAP is improved by 1.9%. 

7. Conclusion 
In this work, we have presented “Intelligent detection using CNN” (ID-CNN) for high-quality object 
detection that is simple, efficient and practical to implement. The proposed framework experimentally 
justifies that multi-layer features merging via a bottleneck structure and the use of contextual learning 
(also via a bottleneck structure) improves the overall detection accuracy. ID-CNN prevents from 
losing any important features and also keeps alive the small-structured object’s features by taking 
them out from shallow layers and merge them with the deeper ones. 

Improvements in context modeling and the inclusion of intermediate level features merging 
resulted in modest, but significant cumulative gains on classification and localization tasks. ID-CNN 
also enables an end-to-end deep learning based object detection framework with the same alternating 
fine-tuning optimization scheme. Finally, its implementation on further deeper network (like Resnet) 
may improve it further. 
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Person: 0.956
Cat: 0.974

Cat: 0.911

 
Figure 5.  Detection examples using “ID-CNN” on PASCAL VOC 2007. An IoU threshold of 0.7 was 

used for correctness.
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