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Abstract.  A novel propagation model with distributed infectious period delay of network 
virus is presented. The formula of basic reproduction number for the model is given. The  
viruses eventually disappear when the basic reproductive number is below the unity, otherwise 
the viruses are persistent.  

1. Introduction 
Network viruses have become a major problem for the security of computer networks. Facing with the 
grim situation of network virus destruction, it’s urgent for people to construct some effective 
mathematical model to predict propagation regularity of the network virus so that we can control the 
spread of virus efficiently. 

The Internet network can be regarded as a complex network, where nodes and links represent 
computers connected to the Internet and communication links between them, respectively. An 
important discovery is the scale-free property [1], that is to say, the node degrees of Internet follow a 
power law distribution, ( ) ~P k k γ− , where ( )P k  stands for the probability that a node chosen randomly 
from Internet is of degree k. Noting that the similarities between network viruses and biological 
viruses, many scholars in the word have exploited the compartment modeling technique used in the 
spreading of biological viruses to study the spreading of network viruses in scale-free network [3-10].  

Compared with ordinary differential equation (ODE) models, more realistic models should be 
functional differential equation (FDE) models, and time delay can describe the incubation period of 
the infectious disease, the immunity period of recovery of the disease and the infectious period of 
patients for FDE model. Unfortunately, only a few attention has been paid to the epidemic models 
with time delays on complex network [7-10]. In the real world, many infected nodes may have 
different infectious period due to the infected nodes’ different temporal, social, and physical contexts. 
Hence it may be more realistic to assume that the delay is considered in a distributed manner [11]. In 
this paper, we will presented a novel FDE SIS epidemic model with infinite distributed delay on scale-
free  network in this paper. 

Without losing generality, let us assume the total number of nodes is fixed. Let ( )kS t  and ( )kI t be the 

relative densities of susceptible and infected nodes of degree k  at time t , and ( )kS t and ( )kI t , at the 
mean-field level, satisfy the following set of coupled functional different equations [6, 7] 

  0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) 1 ( ),

k
k k

k k

d I t k S t t k S t v t v f v dv
dt

S t I t

λ λ
+∞ = Θ − − Θ −


 = −

∫  (1) 

with  the normalized condition 
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( ) ( ) 1k kS t I t+ = , 

where ( )kλ is the infection rate such as kλ [3], ( )c kλ [4] and so on. The kernel function ( )f v denotes the 
fraction of the infective nodes in which the time taken to become the removed isu  and satisfies the 
following assumption: 

0 0
( ) 0, ( ) 1, 0 ( ) .f v f v dv v f v dv

+∞ +∞
≥ = ≤ < +∞∫ ∫  

There are many types of kernel function such that the gamma distribution, normal distribution, 
uniform distribution, and Delta-distribution and so on. ( )tΘ denotes the probability from any given link 
to an infected node. It satisfies the relation 

 
1( ) ,( ) ( ) ( )k

k

t
k

k P k I tϕΘ = ∑   (2)  

where ( ) (1 ) ( 0,0 1, 0)k ak bk a ba aϕ a= + > ≤ ≤ ≥ represents the nonlinear infectivity related with the degree of 
an infected node, and lim ( )k k a bϕ→+∞ =  when 0b ≠  [4]. This is consistent with feature that the infectivity 
of an infected node is limited because network bandwidth are limited. k< >  represents the average 
degree for the network. 

Normally, there is an inevitable lag from the appear of a new virus to the release of the antivirus 
software targeting the network virus, and the network virus can propagation freely through the Internet 
during the lag. The model is suitable for the early spreading of network viruses, there is not the 
removed nodes because effective measures to clear the viruses have not appear. 

The remainder of this paper is structured as follows. We discuss dynamical behaviors of system (1) 
in Section 2. We will give some numerical simulations to verify the main results in Section 3. At last, 
we summarize this work in Section 4. 

2. Main Results 
Let 

  0 0

1 ( ) ( ) ( )R k k vf v dv
k

λ ϕ
+∞

= ∫   (3) 

Obviously, 
0

( )vf v dv
+∞

∫ represents the average infectious period of the patients according to the 

definition of mathematical expectation.  
We shall know that

0R  is basic reproduction number. The basic reproduction number represents the 
average number of secondary infectious infected by an infected node during whole course of network 
virus in the case that all the nodes are susceptible [11].  

System (1) can become the equivalent system (4) as follows. 

 ( )0
( ) ( ) ( ) ( ) ( ) ,

( ) 1 ( ),

v

k kt v

k k

I t k S s s ds f v dv

S t I t

λ
+∞

−

 = Θ

 = −

∫ ∫  (4) 

and we only need to study the dynamical behaviors of  system (4). 
By using similar method in [4, 10], it is easy to know that system (4) has always a virus-free 

equilibrium
0{(1,0)}kE , and it also has a unique endemic equilibrium * *

*{( , )}k k kE S I  when
0 1R > . 

Now we give the main results in this paper. 
Theorem. If

0 1R < , the disease-free equilibrium 0E of system (4) is globally attractive and the relative 
average density of infected nodes ( ) ( ) ( )kk

I t p k I t=∑  satisfies lim ( ) 0.t I t→+∞ = If 
0 1R > , the viruses are 

persistent, i.e.,  

1
liminf ( ) ( ) ( ) .

n

kt k
I t p k I t ε

→∞
=

= >∑
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there where ε  is  a positive constant.
  

Proof: First, we proof that the globally attractivity of  the viruse-free equilibrium 0E  if
0 1R < . 

Consider the following system    

 ( )0
( ) ( ) ( ) ( ) ( ) ,

( ) 1 ( ),

h v

k kt v

k k

I t k S s s ds f v dv

S t I t

λ
−

 = Θ

 = −

∫ ∫   (5) 

where  h >0. 
 We have from (2) that 

 

0( )
( ) ( ) ( ) ( ) ( ) ( )

:
k

k kt
k P k I t k P k k

k k k

ϕ ϕ ϕ
Θ = Θ≤ =

∑ ∑

 
Note that 

 ( )0

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

k
k

h t

kt v
k

t
k P k I t

k

k P k k S s s ds f v dv

k

ϕ

ϕ λ
−

Θ =

Θ
≤

∑

∑ ∫ ∫
  (6) 

and 

0 0
0 ( ) ( ) .

h
v f v dv v f v dv

+∞
< ≤∫ ∫

 
When t>h, we have  from (6) that 

( )00

0 0( )
( ) ( ) ( ) ( )

t

t v
kt

k P k k ds f v dv
R

k

ϕ λ
+∞

−
Θ

Θ
≤ = Θ
∑ ∫ ∫

 

Substituting it into (6), for t>2h, we have  

0

2
0( )t RΘ ≤ Θ  

By induction method, we have 0 0( ) nt RΘ ≤ Θ for t nh>  . 
Hence 0 00 lim ( ) lim 0n

t nt R→+∞ →∞≤ Θ ≤ Θ =  . Moreover, it follows 
 that lim ( ) 0t kI t→+∞ =  for system (5).   
 Let ,h →+∞ we have lim ( ) 0t kI t→+∞ =  hold for system (4). So the equilibrium E0 of system (4) is globally 

attractive when R0 < 1. Consequently, lim ( ) lim ( ) ( ) 0t t kk
I t p k I t→+∞ →+∞= =∑ .  

Second, we discuss the persistence of the network viruses if
0 1.R >  

Denote  

1 1{( , , , , ) : ( ) 0, ( ,0], 1, 2, , },n n kD S I S I I k nτ τ= ≥ ∈ −∞ =   
0 1 1{( , , , , ) : ( ) 0, ( ,0], 1, 2, , },n n kD S I S I D I k nτ τ= ∈ ≥ ∈ −∞ =   

0 0\ .D D D∂ =  

Obviously, system (4) is a dissipative system, and 
0D is positively invariant set of system (4).  Let 

Ω  be the omega limit set of system (4) on D∂ , 0E  is the unique equilibrium of system (4) on 
0D∂  and 
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0EΩ = , 0E is isolated and acyclic. Hence the proof will be completed if we can prove that 
0 0( )SW E D φ∩ = , in which 0( )SW E is the stable manifold of 0E [12]. Suppose it is not true, there exists a 

solution  
1 1( ( ), ( ), , ( ), ( ))n nS t I t S t I t  of system (4) in 0D such that ( ) 1,kS t → ( ) 0kI t → as t →+∞ . 

Noting that 
0 1R > , we can choose 0 1η< <  such that

0(1 ) 1Rη− > , and we can also choose a sufficiently 
large  positive  number h such that 

0 0
1/ ( ) ( ) ( ) 1.

h
R k k k vf v dvλ ϕ= >∫  

For 0η > , there exists a 0T >  such that ( ) 1 ,kS t η> − 0 ( ) ,kI t η≤ < for t T> , 1,2, , .k n=   
Let 

( )
( )

0

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

v

k kt v

h v

kt v

I t k S s s ds f v dv

k S s s ds f v dv

λ

λ

+∞

−

−

= Θ

≥ Θ

∫ ∫

∫ ∫
 

( )0
( )(1 ) ( ) ( )

h v

t v
k s ds f v dvλ h

−
≥ − Θ∫ ∫ . 

And we have 

( )0

( ) ( )( ) (1 ) ( ) ( )
h v

t v

k kt s ds f v dv
k

λ ϕ h
−

< >
Θ ≥ − Θ

< > ∫ ∫  
By using similar methods in [10], we can conclude that it is impossible that ( ) ( ) /t k kϕ ηΘ ≤< > < > for 

t T> . Hence lim inf ( ) 0.t t→+∞ Θ ≠ Furthermore, there exists a k0 ∈  {1, 2…, n} such that 

0
liminf ( ) 0.t kI t→+∞ ≠ Contradicting lim inf t→+∞  Ik(t) = 0 for k = 1, 2, . . . , n.  Consequently, 

  
liminf ( ) ( ) ( ) .kt k

I t p k I t ε
→∞

= >∑
 

Hence, the virus is uniformly persistent according to Lemma1 in [12]. 
Remark. Through the above theoretical analysis, we conclude that the network viruses will 

disappear when 
0 1R < , the network viruses will be persistent when 

0 1R > . Hence 0R  is basic 
reproduction number for system (1). 

3. Numerical Simulation 
Now we give some numerical simulations to support the results obtained in Section 2. The 

simulations are based on a scale-free network in which the degree distribution is ( )P k ck γ−= , 2.5γ =  and 
c satisfies ( ) 1

k
P k =∑ . The maximum degree max 100k = , the minimum degree min 1k = . 

Consider system (1) with parameters ( )k kλ λ= , 0.5a = , 0.75α = , 0.02b = , and let kernel function be a 
class of gamma distribution function and Delta distribution function, respectively, i.e., 

(a) The gamma distribution 1

( )
( 1)!

n
v

n

vf v e
n b

−
−=

−
, where b is a real number. Here we take n=1, b=1and 

( ) vf v e−=  . 
(b) ( ) ( 1),f v tδ= − and the system (1) become the following system with discrete delay   

 
( ) ( ) ( ) ( ) ( ) ( 1) ( 1),

( ) 1 ( ).

k
k k

k k

d I t k S t t k S t t
dt

S t I t

λ λ = Θ − − Θ −

 = −

 (7) 

For the initial conditions 5( ) 0.15I s = and ( ) 0, 5kI s k= ≠  for ( ,0]s∈ −∞ , Fig. 1-2 show the relative 
average density of infected nodes ( )( ) ( )kk

I t p k I t=∑ .  
It is clearly seen from Fig. 1-2 that network viruses will tend to extinction if 

0 1R < , and network 
viruses are persistent if 

0 1R > , These results qualitatively agree with Theorem in Section 2. 
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Although the average infectious period 
0

vve dv
+∞ −∫ =1,  the dynamical behaviors of model (1) with 

( ) vf v e−=  is very different from system (7) one with discrete infectious period delay 1 in the process of 
epidemic spreading, this implies that it is very important to discuss the epidemic spreading model with 
distributed delay in heterogeneous network.  

 

 
Figure 1.  Evolutions of ( )I t  for system (1) with 0.02λ = , 1τ =  and

0 0.3205 1R = <  

 

 

Figure 2.  Evolutions of ( )I t  for system (1) with 0.8λ = , 1τ =  and 0 1.2820 1R = > . 
 
We would like to point that it is interesting but challenging to discuss the global attractivity of 

equilibrium
*E . We will investigate it in the future. 

4. Conclusion 
We introduce a novel SIS model with infinite distributed delay describe the propagation of network 
viruses on the scale-free network. The basic reproduction number for the model has been given. The 
global stability of the disease-free equilibrium has been shown when the basic reproduction number is 
below one, whereas the persistence of the network viruses has been proved when the basic 
reproduction number is above one. These results help to develop policies of prevention and control for 
network viruses.  
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