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Abstract. With the popularity of the Internet of things (IoT), tremendous objects are connected 
to the network, making the network topology complex. Mechanical engineering achieves 
intelligent identification, positioning, tracking, monitoring and management of engineering 
machinery through the IoT, where information exchange and communication require novel 
intelligent routing algorithms as traditional routing algorithms are unfit for current network 
environment. Q-routing implemented a dynamic adjustment which was based on the network 
environment by combining the Q-learning algorithm. However, Q-routing is a highly random 
network environment and leads to a decline in performance because of overestimation of 
values. To solve the problem, we propose an algorithm called Delayed Q-routing (DQ-routing), 
which uses two sets of value functions to carry out random delayed updates so as to reduce the 
overestimation of the value function and improve the rate of convergence. The experiments 
indicate that DQ-routing algorithm gets well performance in several problems. 

1. Introduction 
In recent years, with the development of Internet of things (IoT), the overall communication data of 
the network is keeping increasing. To handle the complex networks, it is particularly important to 
develop effective routing strategies. Traditional static routing algorithms are difficult to apply to the 
large-scale network with uncertain load as they usually use fixed rules such as routing table, which 
cannot be adjusted promptly to the fluctuation of network state [1]. Although dynamic routing 
algorithms can automatically adjust the routing strategy according to the current network environment, 
the general dynamic algorithm needs the global information and the complexity is high. As a result, 
the network load usually tend to increase [2]. 

IoT is the network of physical devices, vehicles, home appliances and other items embedded with 
electronics, software, sensors, actuators, and connectivity which enables these objects to connect and 
exchange data [3]. The number of online available devices in the world has reached 8.4 billion in 2017 
[4], and experts expect more than 30 billion objects will be connected to IoT and the global market 
value of IoT will reach 7.1 trillion by 2020 [5]. Each device in IoT can be regarded as a route, and 
routing algorithm is used when data exchange and transmission between routes.  

There are two kinds of routing algorithms: static routing and dynamic routing. The purpose of the 
routing algorithm is to transfer data from the starting node to the target node as fast as possible. If the 
network is congested, the routing algorithm must quickly adjust the routing strategy to improve the 
transmission efficiency. For QoS routing problems, researchers have done a lot of work and put 
forward many related methods. Liu [6] proposed a novel agent-assisted QoS-based routing algorithm 
for wireless sensor networks. In this method, the synthetic QoS of WSNs is chosen as the adaptive 
value of a Particle Swarm Optimization algorithm to improve the overall performance of network. 
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Dubois [7] proposed a distributed routing algorithm for vertically partially connected regular 2D 
topologies of different shapes and sizes. This paper proves that independently of the shape and 
dimensions of the planar topologies and of the number and placement of the TSVs, the proposed 
routing algorithm using two virtual channels in the plane is deadlock and livelock free. Wang [8] 
proposed a trust-based QoS routing algorithm (called TQR) from the trade-off between trust degree 
and link delay. This paper introduces the concept of trust and QoS metric estimation into establishing 
a trust-based QoS model. Amgoth [9] proposed an energy aware routing algorithm for cluster based 
WSNs. The algorithm is based on a clever strategy of cluster head (CH) selection, residual energy of 
the CHs and the intra-cluster distance for cluster formation. Zeng [10] proposed an Improved 
Harmony Search Based Energy Efficient Routing Algorithm (IHSBEER) for WSNs, which is based on 
harmony search (HS) algorithm. In recent years, researchers have adopted reinforcement learning to 
solve routing problems. Farahnakian [11] used Q-learning to alleviate congestion in the network. 
Shilova [12] proposed an extension of full echo modification of Q-routing algorithm and uses adaptive 
learning rates to improve exploration behavior. 

To solve the problem, we proposes an algorithm called Delayed Q-routing (DQ-routing), which 
uses two sets of value functions to carry out random delayed updates. The random delayed update of 
the estimator can reduce the overestimation of the value function and improve the rate of convergence. 

2. Reinforcement Learning 
Reinforcement learning is widely used in machine learning [13]. Reinforcement learning is not limited 
to a certain method. In practical problems, the agent should interact with the environment so as to 
achieve its goal [14]. This is a basic idea to be followed in reinforcement learning. The definition of 
reinforcement learning is defined by describing a learning problem, and any method that can solve this 
problem can be regarded as a reinforcement learning method. To achieve this goal, the agents we 
define must be able to interact with the environment, and to a certain degree of awareness of the 
environment, and then through perception to make an action that can affect the state [15]. With these 
prerequisites, we must have one or more goals to form an environment for reinforcement learning. 
Markov Decision Processes (MDPs) are a mathematically idealized form of the reinforcement learning 
problem for which precise theoretical statements can be made [16]. 

A MDP can be regarded as a 5-tuples <S, A, R, P, γ>, where S represents states, A represents 
actions, P is the state-transition probabilities, which means the probability of the agent making action 
a at state s and moving to state s’, R represents the immediate reward and γ is the discount rate which 
determines the importance of future rewards [17]. 

The agent’s goal is to maximize the cumulative reward in the long run [18]. Given a sequence of 
rewards received after time step t is denoted by rt+1, rt+2, rt+3, …, then the agent’s goal is to maximize 
the expected return. The return is the sum of the rewards: 

1 2 3 ...t t t t TG r r rr+ + += ++ + +                              (1)  

where T is a final time step. But we often use the discounting return as the goal: 
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In reinforcement learning, we use the value function to indicate the quality of a state or a state 
action pair [19]. The rewards the agent can expect to receive in the future depend on the policy. 
Formally, a policy is a mapping from states to probabilities of selecting each possible action. If the 
agent is following policy π at time t, then π(a|s) is the probability that at=a and st=s. The value of a 
state s  under a policy π, denoted vπ(s), is the expected return when starting in s and following π.For 
MDPs, we can define vπ(s) as: 
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According to the property of MDPs, we can rewrite the equation (3) into a recursive form of 
Bellman equation for vπ(s) [20]: 

'

( ) ( ',( | | , ) [ ') ( )]
s ra

V s p s r s as ra sππ π γυ= +∑ ∑∑                      (4) 

3. Modelling with Q-learning 
The routing algorithm solves the problem of how to choose the nodes to transmit so that the packets 
can be sent to the destination as fast as possible. Many dynamic routing algorithms need to use global 
information, which is difficult to obtain accurately in practical applications. The problem can be 
solved by utilizing reinforcement learning. Reinforcement learning is not dependent on the global 
information, and the optimal strategy can be learned by calculating the value function for each route in 
the network, which only has the current state information and the follow-up information after 
transferring data to next route.  

First, determine what state is. In IoT, every node that can send and receive data can be regarded as 
a state. The goal of routing algorithm is to transmit data as quickly as possible to the target route. The 
node x in the network can be represented as (x, d), where d denotes the target route. The reason for 
adding a target route in the state is that the same route may handle packets of different target route. In 
order to distinguish these packets, we add their target routing to form different states to get more 
accurate value functions. 

Then we consider the action set of the state (x, d). Route set {y1, y2, y3… } includes all routes that 
route x can choose to transmit packets. We use y(x) to denote the route set and the action y that can be 
chosen under the route x belongs to this set. Next, we're going to determine the reward information. In 
reinforcement learning, reward information will affect the whole learning process. Different reward 
information will result in different results and sometimes affect learning efficiency. To ensure that 
data is transmitted to target routing as soon as possible, we divide the reward into two parts. The first 
part is the packet waiting time w, which indicates the waiting time of packets in the routing queue. The 
second part is the packet transmission time t, which represents the time that the packet is transferred 
from the current route to the next route. These two parts form a complete reward and use only the 
information of the current route without any other global information. 

Finally, the value function used by the algorithm is defined. The Q-value function reflects how 
good or how bad the state is and the updated value will be taken as the true value of the state to 
participate in subsequent updates. In order to facilitate the presentation, the data is transmitted to the 
same target routing d. Define the value function as Qd(x, y), where d indicates the target routing, x 
indicates the current state, and y indicates the action that the current route x select and the route 
transmit the packet to. The backup equation can be obtained through the above definition: 

( , ) ( , ) ( min ( , ) ( , ))d d z d dx y Q x y w t y z Q xQ yQα γ= + + + −               (5) 
The Q-learning algorithm selects the optimal action calculation error in the next state when 

calculating the error. The less time the data takes is, the better the action is, so the action of the 
minimum value function is selected in the equation (5). The simplest Q-routing algorithm is shown in 
Algorithm 1. 

Algorithm 1. Q-routing 
Initialization: ∀x ∈S , y ∈A ,Q(x, y)  
Output：learned action policy 
1:   Repeat (for each episode): 
2:       Initialize x 
3:       Repeat (for each route): 
4:           Using policy from Q to choose action y from x 
5:           Take action y, observe t, w 
6:           δ = t + w+ γ maxzQ( y,z)−Q(x, y)  
7:           Q(x, y) = Q(x, y)+αδ  



GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012048

IOP Publishing

doi:10.1088/1755-1315/234/1/012048

4

8:          x = y  
9:       Until x is terminal 
10:  Return action policy 
 

4. Algorithm 
Compared with the previous routing algorithm, although the Q-routing algorithm has the advantage of 
performance, there is an overestimation of the value function in high random environments as well as 
the Q-learning algorithm. In practice, the network structure is complex and the network environment is 
highly random. The traditional Q-routing algorithm is difficult to adjust in different scenes to meet 
different needs and its overestimation in high random networks will affect the learning rate. 

In order to solve the overestimation of value function, this paper proposes a Q-routing algorithm 
using the delayed estimator, called delayed Q-routing (DQ-routing). The algorithm uses the value of 
the delayed estimator as an estimate of the target value when updating. This mechanism can avoid 
overestimation of the current estimator and speed up the learning rate. The delayed Q-routing is shown 
in Algorithm 2. 

Algorithm 2. Delayed Q-routing (DQ-routing) 
Initial: ∀x ∈S , y ∈A ,Q(x, y),P(x, y)  
Output： action policy after learning 
1:   Repeat (for each episode): 
2:       Initialize x 
3:       Repeat (for each route): 
4:           from Q and P to choose action y from x 
5:           Take action y, observe t, w 
6:           If (switch estimator): 
7:               swap(Q, P) 
8:           z = argmax z Q( y,z)  
9:           δ = t + w+ γ P( y,z)−Q(x, y)  
10:          Q(x, y) = Q(x, y)+αδ  
11:          x = y  
12:       Until x is terminal 
13:  Return action policy 
 
From Algorithm 2, we can see that two estimators are used, but in each time step only one 

estimator is updated. The reason for Q-learning's overestimation is that it always selects the optimal 
action of the next state as an estimate when updating. Using the optimal value of the next state in Q-
learning results in an optimal value function, but in a highly random environment, the value function is 
inaccurate, and blindly using the optimal value of the next state leads to overestimate and slow down 
the learning rate. By using the delayed estimator, we can avoid blindly using the optimal value, so that 
agent can learn the optimal strategy faster and improve the learning rate. 

5. Experiment 

5.1 Routing Selection 
Figure 1 shows the network structure of routing selection problem，where node 1 is the starting route 
and node 4 is the target route. There are two routes that node 1 can choose, namely node 2 and node 3, 
and the rewards of these two nodes are 0. Nodes 2 to node 4 have 10 lines and all networks have 
random fluctuations and conform to a normal distribution. Thus, the expected return for any trajectory 
starting with node 2 is 0.1 and selecting node 2 in node 1 is always a mistake. 

 



GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012048

IOP Publishing

doi:10.1088/1755-1315/234/1/012048

5

 

Figure 1. Diagram of routing selection problem. 
 
Table 1 shows the probability of two algorithms to select the wrong nodes. Compared with the Q-

routing algorithm, DQ-routing is more likely to choose the best action at the very beginning. This 
indicates that the delayed estimator can avoid overestimation and find the optimal strategy quickly. 

 
Table 1. Probability of incorrectly selecting nodes by Q-routing and DQ-routing. 

Time step Q-routing DQ-routing 
50 0.86112195 0.32707317 

100 0.76940659 0.21558242 
150 0.6352766 0.16791489 
200 0.52681675 0.14512042 
250 0.44927801 0.13029046 
300 0.39364261 0.12035052 

 
Figure 2 shows the performance of the Q-routing algorithm and the DQ-routing algorithm in the 

above domain. Q-routing initially learns to select node 2 much more often than the node 3, and always 
takes it significantly more often than the 5% minimum probability enforced by ε-greedy action 
selection with ε = 0.1. In contrast, Delayed Q-routing is essentially unaffected by maximization bias. 
These data are averaged over 5,000 runs. The initial action-value estimates were zero. Any ties in ε-
greedy action selection were broken randomly. 

 

Figure 2. Performance comparison of Q-routing and DQ-routing. 
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5.2 Packets Transmission 
Figure 3 shows the network structure of packets transmission problem, where node 1 is the starting 
route and node 9 is the target route. The network between the nodes in the graph is unstable. The 
probability that the network has 50% is connected with reward 10, and the probability of 50% is 
disconnected with reward -12. When the target route is reached, agent can get a reward of 5. 
 

 

Figure 3. Diagram of packets transmission problem. 
 
Figure 4 shows the average reward per step of DQ-routing and Q-routing. The average reward of 

DQ-routing is much higher than that of Q-routing, which indicates that DQ-routing has found the best 
strategy. 

 

 

Figure 4. Average reward in packets transmission problem. 
 
Through the comparison of two groups of experiments, we can see that the performance of DQ-

routing in high random environment is better than that of Q-routing. Moreover, the performance of 
DQ-routing algorithm is obviously superior to Q-routing algorithm in the condition of the network 
environment unstable, and the difference distance will increase with the time increase. The DQ-
routing algorithm can find the optimal policy in both scenarios. 
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6. Conclusion 
Traditional routing algorithms cannot dynamically adjust routing strategies based on network 
fluctuations and cannot be applied to the increasingly complex network environment. Although the Q-
routing algorithm can dynamically adjust the strategy, the performance in a high-random network will 
be affected by the overestimation of value function. 

In this paper, we propose a delayed Q-routing algorithm that avoids overestimation of the value 
function by using a delayed estimator. Through experiments, it has been proved that DQ-routing not 
only avoids the overestimation of the value function but also improves the learning rate. 
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