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Abstract. It is usually necessary to identify and extract specific characteristics by 

deriving an informative fused image from multiple images. An effective fusion 

algorithm was proposed by combining the intensity-hue-saturation (IHS) transformation 

and the regional variance matching degree (RVMD) in our study. Visible and thermal 

infrared images of wheat were used as the original data sources. After finishing the IHS 

transformation, a fusion rule was designed to produce the new component I. More 

specifically, the high frequency fusion rule was generated by the RVMD with a 

threshold of 0.5 and a 3 × 3 moving window, and the weighted average was used as the 

low frequency fusion rule. Experimental results show that the proposed algorithm can 

avoid producing color distortion in comparison with the IHS transformation, and 

additionally, it can also enhance the edge contrast and produce more obvious texture 

resolution. In addition, three quantitative indicators including entropy, standard 

deviation and average gradient were used to validate the proposed algorithm. The 

analysis results show that the values of three indicators are respectively 7.82, 63.93, 

10.06, which are better than the results derived from the IHS transformation and 

regional variance fusion. 

1. Introduction 

As a very important branch of data fusion, remote sensing image fusion involves many fields such as 

information fusion, sensor, image processing, etc. [1-3]. To meet the specific needs of generating a 

more informative remote sensing image, it uses a certain algorithm to merge different sensors with 

various imaging mechanism for describing the same landscape. Consequently, fusion of remote 

sensing images will have higher reliability, less fuzzy, better comprehensible, more suitable for human 

visual and computer detection, classification, recognition and understanding of processing [4-7]. The 

advantages of remote sensing image fusion have been widely applied in various application fields, so 

it has highly practical significance to propose more effective and useful fusion algorithms from 

multiple remote sensing sensors. Since the emergence of Earth Observing System (EOS), various 

fusion remote sensing fusion methods have been proposed at different levels from multisource 

remotely sensed imagery [8]. 

The existing remote sensing image fusion algorithms are usually based on a single pixel, which is 

the only specific decomposition level based on the fusion results of pixel values. Additionally, the 
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fusion rules of remote sensing image are the corresponding pixel values take a large (small) and the 

corresponding pixel value of the weighted average method [9]. Conversely, the pixel value of a single 

pixel does not fully express the regional characteristics of the whole remote sensing image. The pixels 

of remote sensing image in a region generally have significant correlation. Therefore, the remote 

sensing image fusion based on the single pixel value has a certain one-sidedness, and the fusion 

quality is often not very high. The key step is to improve the fusion rules by considering the regional 

characteristics of remote sensing image instead of pixel-based fusion [10].  

In summary, we proposed a remote sensing fusion algorithm based on the IHS color space and 

regional variance matching degree. The method can remove the color distortion in comparison with 

the IHS algorithm. In addition, it can also solve the traditional block fusion based on remote sensing 

image processing. To validate the fusion method, we compare the results with the IHS algorithm and 

regional variance fusion. Two visible and thermal infrared images of wheat at the jointing stage were 

acquired to check our fusion method in the practical application. 

2. Materials and Methods 

2.1. Collection of Experimental Data 
 

(a) Visible image (b) Thermal infrared image  

Figure 1. Acquired original visible and thermal infrared images. 

Electric eight-rotor unmanned aerial vehicle (UAV) was used to carry the two sensors, with a load 

weight of 6 kg and an endurance time of 20 min. Two sensors included HD digital camera (Sony 

DSC-QX100) with a resolution of 5472 × 3648 pixels and Optris PI thermal imaging system with a 

temperature resolution of 0.05 K. The flight altitude was set to 50 m. The original digital visible and 

thermal infrared images of the same plots were acquired at the jointing stage of wheat in March 2016 

(Fig. 1). 

2.2. Description of Remote Sensing Image 

There are many types of regional features for a remote sensing image, which represent the different 

physical meanings. In our study, regional energy, regional median and regional mean are just given. 

The regional energy (E) in the coordinate (n, m) of an image G is defined as Eq. (1). 
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where J and K are the sizes of the local area in the remote sensing image (e.g. 3 × 3, 5 × 5, 7 × 7), 

and the changes of n* and m* are within the ranges of J and K. 
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The definition of regional median and mean of the remote sensing image are respectively shown in 

Eqs. (2) and (3). 

median
( , ) ( , )

ed
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where N is the total number of pixels in the specified region. 

2.3. Regional Variance Matching Degree 

Definition of the regional variance matching degree (RVMD) of a remote sensing image is shown as 

Eqs. (4)~(6) [11]. Suppose C(A) is the wavelet coefficient matrix of the remote sensing image A, p(m, 

n) is the spatial coordinates of wavelet coefficients, and C(A, p) is the coefficient value of coordinates 

(m, n) in the wavelet coefficient. Firstly, the significance of regional variance of the image is defined. 

It is the weighted variance of the wavelet coefficients in the Q region centered on the p point, as 

shown in Eq. (4). The regional variance significance of the coefficient in the Q range of the p center of 

the wavelet coefficient matrix is shown as Eq. (6), which is expressed as the G(A, p). 
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where q represents the coefficients within the region in the Eq. (4), w(p) represents the weight of 

weighted variance, MA, B(p) is the regional variance matching degree of the coefficients in the wavelet 

coefficient matrix of remote sensing image A and B respectively with the region Q as the coordinate p, 

and G(A, p) and G(A, p) are respectively the regional variance significance of each coefficient in the 

wavelet coefficient matrix of image A and B.  

2.4. Proposed Remote Sensing Fusion Method 

In our study, a new fusion method was proposed based on the IHS color space and RVMD. Two well-

matched original visible (A) and infrared (B) remote sensing images are taken as the examples and 

specific operation steps are described as follows (Fig. 2). 

(1) Visible and infrared remote sensing image are strictly registered; 

(2) Both of them are transformed from red-green-blue (RGB) color space to IHS color space 

respectively using the Eq. (1); 

(3) The I components of visible and infrared images are decomposed into 4 layers where the sym4 

is selected as the wavelet base; 

(4) The average values of the low-frequency parts of the two sets of wavelet coefficients are taken 

as the low-frequency part of the I component of the fused image; 

(5) To calculate the regional variance degree of the high frequency coefficients of the visible and 

infrared images. 
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Figure 2. Schematic diagram of the proposed fusion algorithm. 

2.5. Selection of Fusion Rules 

The weighted average of the low-frequency sub-bands of component IA and IB of the original remote 

sensing images A and B is used to obtain the component IF of the fused remote sensing image (Eq. 7). 

2/)( BAF III                                  (7) 

The high-frequency sub-band of the component I of the original remote sensing images A and B is 

taken as the fusion rule based on the RVMD. In general, an odd number of window forms is selected 

in the region, e. g. 3 × 3, 5 × 5, 7 × 7. In our study, a 3 × 3 window is used with a weighted template of 

P (Eq. 8). The variance matching degree of the region with the threshold value of 0.5 gets the new 

component IF. The method is to use the weighting template P and move up and down and left and right, 

and the variance matching degree in the corresponding window region is calculated in each region. 
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3. Results and Discussions 

3.1. Comparison of Fusion Results 
 

(a) Our proposed method (b) Regional variance fusion (c) IHS transform  

Figure 3. Comparison of the fusion results of three methods. 

To demonstrate the fusion result of our proposed method, additional two methods are used including 

reginal variance fusion and IHS transformation (Fig. 3). It can be visually found that they have similar 

fusion result for regional variance fusion (Fig. 3b) and our proposed fusion method (Fig. 3a), but it has 

more fine features and obvious texture in Fig. 3a. In addition, three quantitative indicators including 

entropy, standard deviation and average gradient are used to further compare the fusion results (Table 

1). We can also find that all the values of three evaluation indicators are the most in the fused image 

derived from our method. 
 

Table 1.  Comparison of fusion results using quantitative indicators.  

Image Entrop

y 

Standard 

deviation 

Average 

gradient 

Fig. 1a 7.74 60.14 9.64 

Fig. 1b 7.76 57.92 4.59 

Fig. 3a 7.82 63.93 10.06 

Fig. 3b 7.54 58.08 9.32 

Fig. 3c 7.77 57.92 9.34 

 

3.2. Analysis of Image Fusion Algorithms 

Image fusion is a branch of data fusion technology. It is to combine multiple images of the same scene 

that are usually obtained by two or more imaging sensors at the same or different time. Since different 

sensors have different imaging mechanism, the redundancy and complementarity between the images 

of the same scene can be inevitablely produced [12-14]. Consequently, it is of great significance to 

synthesize or fuse multiple images to generate a more informative image.  

At present, there are several widely used image fusion methods including wavelet transform, 

Contourlet transform, median filtering algorithm, principal component transform, Brovey fusion, IHS 

transform, etc. Among them, the basic idea of image fusion based on wavelet transform is that the 

wavelet transform can effectively separate the frequency characteristics of the image [15-17]. The low 
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frequency part reflects the whole visual information of the image, and the high frequency component 

reflects the details of the image. Because the wavelet fusion retains the high frequency characteristics 

of high-resolution image, the fusion effect is good. The difficulty of the fusion algorithm is the 

selection of fusion rules [18]. The appropriate fusion rules can't be chosen often makes the loss of the 

image details and the decrease of the information contains. 

In summary, this paper presents a remote sensing image fusion method based on HIS color space 

and regional variance matching degree. Firstly, the remote sensing image is transformed from RGB 

space to IHS color space, the wavelet transformation of the components I of the infrared and visible 

remote sensing images are performed respectively. The coefficients of wavelet coefficients are chosen 

according to the fusion rule of region variance matching degree. 

3.3. Performance of the Proposed Fusion Method 

From the above quantitative analysis, we can see that the fusion result obtained by the proposed 

method is superior to traditional fusion methods based on IHS transform method and regional variance 

matching degree. First, from the spatial detail information, the information entropy is larger than that 

of traditional methods based on IHS transform and region variance matching, so the fused remote 

sensing image contains more information. The average gradient is a sign of clarity, the method used in 

this paper to obtain a higher degree of clarity, the maximum standard deviation indicates that the 

fusion remote sensing image obtained in this paper has the best visual effect. This shows that the 

objective evaluation results and subjective evaluation results are consistent. 

4. Conclusion 

Traditional fusion methods are usually based on the regional feature, which makes the fused remote 

sensing image prone to block phenomenon. Conversely, the IHS color space based methods can solve 

this problem well. However, IHS-based methods are prone to color distortion. It can be concluded that 

the proposed fusion algorithm based on IHS transform and regional variance matching degree can 

produce better fused image than traditional IHS transform and regional variance fusion. The fused 

image has more information entropy and more clear texture edge. In this study, however, we only 

make a preliminary study on the image fusion based on IHS spatial and regional features. Visible and 

thermal infrared images of wheat are just considered to validate the fusion method. The availability 

and significance of this method is still required to be validated by more remote sensing images. 
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