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Abstract. In this paper, we proposed a novel visual tracking system by constructing the 

Constrained Correlation Filter (CCF) with Depth Information. More specifically, in our 

proposed system, to avoid the boundary effects and the fixed shape assumption of conventional 

Discriminative Correlation Filter (DCF), the shape of target is extracted from depth image 

provided by RGB-D sensor to construct the CCF, which may prevent the filter from being 

disturbed by the background noise at the learning stage and enlarge the search region. 

Moreover, in order to avoid the drifting problem, the update of the model is stopped once part 

of the target is occluded. The feature weighting coefficients, which reflect the discriminability 

of the feature channels, are used at the location stage to improve the discriminability. The 

experimental results show that our method is capable of achieving state-of-the-art performance 

on Princeton RGB-D tracking benchmark among all public tracking algorithms. 

1 Introduction 
Visual tracking has been a popular and challenging topic in recent years, while the challenges come 

from a number of factors, such as illumination and scale changes, rotation in and out of plane, 

movement by target or camera, etc. Quite a number of visual tracking methods[1-8] based on DCF[9] 

have been proposed and have shown impressive performance in all standard benchmarks since 

Bolme[10] introduced correlation filter into visual tracker. More discriminative features such as 

Histogram of Oriented Gradient (HOG)[11], Colour Names (CN)[12], Deep Convolutional Neural 

Networks (CNNs)[4,6,13,14], and tricks such as kernel[1-2], ridge regression[2], spatial and temporal 

regularization are adopted to improve the performance and robustness of visual tracking[3,5]. 

However, the visual tracking problem is still far from being solved. 

The above mentioned DCF-based trackers benefit from the periodic assumption of training samples, 

which can be learned efficiently in the frequency domain via Fast Fourier Transform (FFT). However, 

the DCF-based tracker also introduces unwanted boundary effects, which may severely degrade the 

quality of the tracking model. This is because that, firstly, inaccurate negative training patches would 

reduce the discriminability of the learned model. Secondly, the detection scores are only accurate 

around the center of the search region, while the remaining scores are heavily influenced by the 

periodic repetitions of the detection samples. This leads to a restricted target search region at the 

location stage.  

For the sake of avoiding the boundary effects, Kiani Galoogahi proposed Limited Boundaries 

Correlation Filter (LBCF)[15] which addressed the problem that occurs due to learning with circular 

correlation from small training regions. They proposed a learning framework that artificially increases  
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（a）                                    (b)                                    (c)                                       (d) 

Figure 1.The result of our proposed method  

 

the filter size by implicitly zero padding the filter, which reduces the boundary effects artifacts by 

increasing the number of training examples in constrained filter learning. Danelljan proposed Spatially 

Regularized DCF (SRDCF)[3] which introduced spatial regularization by reformulating the loss 

function to penalize nonzero filter values outside the object boundary. Though SRDCF outperforms 

LBCF[15], the learned filter of SRDCF is still limited by the rectangular shape assumption. Lukezic 

proposed Channel and Spatial Reliability DCF (CSR-DCF)[16] which introduced the spatial reliability 

map to eliminate the limitations of periodic assumption and the rectangular shape assumption, and 

they also introduced the channel weights based on the discriminability to further avoid the different 

scales issue of each feature channels’s contribution to the final response. The weakness of CSR-DCF 

is that the quality of the estimated spatial reliability map on colour image using spatial 2D priors and 

color segmentation is relatively low. The map can be segmented exactly with spatial information.  

The RGB-D sensor can provide spatial information without extra computational cost in 3D tracking, 

which gains robustness in scenarios such as illumination changes and scale changes, and provides 

strong cues for shape changes and occlusion.  

In 3D tracking, one of the first methods was proposed by Song[17], which combined an SVM 

detector and an optical flow tracker, who released the Princeton benchmark that includes 100 videos 

with 11 categories for both RGB and RGB-D visual tracking. In the tracker, HOG feature was 

extracted on both depth and colour image. The speed of the method is only 0.26 fps on average, due to 

exhaustive search and optical flow. However, in terms of precision it outperformed state-of-the-art 

RGB-only trackers, which demonstrates the importance of depth information in visual tracking.  

Based on Princeton benchmark, quite a number of tracking methods[18-21] have been proposed. 

Bible[19] presented a part-based sparse tracker in particle filter framework. The target location was 
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firstly estimate by optical flow, then particles are sampled in rotation and translation space. In addition, 

they proposed an automated method to abate the noise of synchronization and registration between the 

color and depth streams, which achieved the state-of-the-art performance on Princeton benchmark. 

However, this method based on PCL library which greatly limited it's practical applications may lead 

to high computational complexity.  

Depth Scale-Kernelized Correlation Filter (DS-KCF)[18] proposed by Hannuna integrated both 

depth and colour features in the Kernelized Correlation Filter (KCF)[2] framework, which included 

target object segmentation to obtain the region of target. The depth distribution of target extracted 

from the the region of target on depth image is used for scale changes, occlusions and aspect ratio 

changes of the tracking model. But the method based on KCF is limited by boundary effects and fixed 

shape assumption. 

Kart proposed Depth Mask-DCF (DM-DCF)[20] which introduced the 2D spatial reliability 

map[16] into 3D tracking, where they get the spatial reliability map on depth image by producing a 

foreground probability map. In our work, a more accurate and robust segmentation method is adopted 

to get the reliability map. At the same time, an occlusion handling mechanism is introduced to 

improve robustness. The result of our proposed method is shown as figure 1 in the case of scale 

variance (a)(c)(d), deformations (a)(b)(c)(d) and out-of-plan rotations (c). Yellow rectangle represents 

the search window when occlusions occur and the red rectangle represents the target. Against this 

background, our novel contributions are: 

1. We get more accurate shape of target using clustering on depth histogram than the methods using 

foreground probability map or colour segmentation. 

2. We construct the CCF with the shape of target to overcome the boundary effects and prevent the 

filter from being disturbed by the background. 

3. We closely integrate depth and the colour image, and gain the best performance on the Princeton 

dataset among all public tracking algorithms. 

The remainder of the paper is organized as follows: Section 2 introduces the DCF framework. Our 

proposed scheme is described in Section 3, while experiments and conclusion are presented in Section 

4 and Section 5 respectively. 

2. DCF Framework 
The aim of standard DCF formulation is to learn a multi-channel convolution filter h  by minimizing 

the L2-error between the response ( )g h  on the training feature f  and the desired output labels g . 

DCF is formulated as a ridge regression problem as 

 
2 2

( ) ( )h g h g h    ，  (1) 

where,   is the weight of the regularization term. The label g  is a Gaussian function, which decays 

smoothly from one at the target center to zero for other shifts and we have 

 
1

( ) *
cN

d d

d

g h f h


  ，  (2) 

where * represents circular correlation between M N
df  and 

M N
dh  , M  and N are the 

width and height of the target region, respectively. CN is the number of the feature channels of 

the image region to be detected or to be trained. Let us further convert the loss function 

equation (1) to the Fourier domain as 

 

2 2

1 1

( ) ( ) .
c cN N

d d

d d

h diag f h g h 
 

      (3) 

Here, 
1D

dh   denotes the column vector of the Discrete Fourier Transformation (DFT) of dh , with 

D M N  . ( )ddiag f is a D D  diagonal matrix formed from df  and ( )  is the complex conjugate 

operator. The closed form solution of equation (3) is  
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  
1

1
( ) ( )

Nc
d d d dd

d
h diag f g diag f f 




  ，  (4) 

where, the fraction indicates element-wise division. The efficiency of the DCF is apparent in equation 

(4) as it reduces the computational cost of the general ridge regression problem from 2
cN D( )O  to 

( log( ))cN D D O  of the element-wise division operations and DFT/IDFT included in equation (4). 

3. Proposed Scheme 
In this section, we detail our proposed scheme. Firstly, the shape of target is segmented from the 

rectangular target area on the depth image as the spatial reliability map. Secondly, CCF is constructed 

to eliminate the boundary effects with the spatial reliability map. Thirdly, for the next frame, the target 

location is estimated by the final response which is the sum of the product of each feature channel's 

response and the corresponding channel reliability weights. Finally, the occlusion is detected and 

handled by the final response and the result of segmentation. 

3.1 Depth Image Segmentation 

In DCF formulation, the size of filter and the shape of target shall be fixed. Since the target shape is 

arbitrary, the filter will inevitably be corrupted by the background at the learning stage. If target shape 

is available, the limitation of fixed shape can be overcame. Depth information gains robustness in 

many scenarios such as scale changes, shape changes and occlusion. Our proposed method can get the 

mask of the target by depth information which is either one for the target or zero otherwise.  

The K-Means clustering algorithm is capable of extracting target from colour image[22.23]. The 

main drawback of K-Means is that its result is very sensitive to the initial cluster seeds and outlier, and 

that number of cluster K needs to be known in advance. As the computational burden of K-Means may 

lead to a disaster when the amount of data is large, we implement the K-Means cluster on the depth 

histogram to reduce the number of points to be clustered. The local maxima of the depth histogram 

( )jh d  are good seeds 
0td  for K-Means to reduce the convergence time which is determined by Non-

Maxima Suppression (NMS). The number of cluster K equals to the number of local maxima. 

 
(a)                                                                     (b)                                                                   

Figure 2.Depth histogram at the frame 108 of sequence face_occ5 in Princeton datasets.  
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Let  jh d  be the depth histogram consisted of j  bins with depth value jd , where each bin is 

assigned to the closest cluster k . Then updated method of the cluster's centroid becomes 

  
1

1 ( ) ( ).
j j

t
j j jk d k d k

d h d d h d




 
     (5) 

 After the algorithm convergences, the cluster with minimum mean depth will be selected as the 

target cluster. All the points of which the depth value is in the range of target cluster will be selected 

as the candidate points for target masking. Connected components are formed from the candidate  

 

 
(a)                                   (b)                                     (c)                                  (d) 

Figure 3. The tracking result and mask of  “face_occ5” video.  

 

points in the image plane to distinguish objects located within the same depth plane, and to remove 

clusters corresponding small regions. The spatial distribution of the target is described by the mean 

obj  and the standard deviation obj  of the depth value corresponds the target region. To ensure a 

correct segmentation, the bin width wb  of depth histogram is adjusted by the obj  and the noise model 

depthN  of the depth sensor[24], which may be expressed as 

 max( , ).w obj depthb N   (6) 

The presence of outliers has great impacts on the mean obj and the standard deviation obj  of a target. 

More specifically, if the depth distribution of the target is highly dense, and the region of background 

is relatively small, there may be only one peak. In this case, all the depth data will be within a same 

cluster. The corresponding mean obj  and standard deviation obj may increase, and the discrimination 

between target and occlusion will decline. If outliers are detected, we add a K-Means seed at the end 

of the depth histogram as background to ensure a correct estimation of the target. An example of depth 

segmentation is shown in figure 2 and figure 3. The depth histogram at the frame 108 of video 

face_occ5 in Princeton datasets is shown as figure 2 in which (a) and (b) are the depth histogram in the 



GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012005

IOP Publishing

doi:10.1088/1755-1315/234/1/012005

6

 

 

 

 

 

 

depth bin [0, 25] and [145, 170], respectively. All bins not display are zeros. If there is only one 

cluster, the standard deviation of the target's depth will rise from 29mm to 138mm, leading to a 

tracking result and mask of the video is shown in figure 3. The left two columns with the method 

adding a cluster seed at the end of depth histogram and the right two without. The left two columns 

discriminate between target and occlusion with accurate standard deviation, but the right's filter is 

corrupted by the occlusion object, where it may be seen the performance of the method with outliers 

handling outperforms than without. 

3.2 Constructing CCF 

We get the spatial reliability map using depth image segmentation to construct the CCF, which allows 

the system to enlarge the search region and to improve the performance of tracking non-rectangular 

objects. The constraint can be formalized as h h m ,  where  denotes the element-wise product. 

Such a constraint does not lead to a closed-form solution, but an iterative approach can be employed 

for efficiently solving the optimization problem. We first introduce a dual variable ch  and construct 

the constraint as follow: 

 0,ch m h    (7) 

which leads to the following augmented Lagrangian 

 
2

2
( , , | ) ( ) ( ) ( ) ,

2

H H

c c m c m c m c mh h I m diag f h g h I h h I h h h h



 

         
 

L   (8) 

Where I  is a complex Lagrange multiplier, 0  , and mh h m  is defined for compact notation. 

The augmented Lagrangian can be iteratively minimized by the alternating direction method of 

multipliers (ADMM)[25], which sequentially solves the following sub-problems at each iteration: 

 
+1

=arg min ( , , | ),
c

i
i i

cc hh h h I mL   (9) 

 
1

1 arg  min ( , , | ),
i

i i
h ch h h I m


  L   (10) 

and the Lagrange multiplier is updated as: 

  

 
1

1 1( ).
i

i i i
cI I h h


      (11) 

Minimizations in equation (9) and equation (10) at each iteration have a close-form solution of 

 
1 1

( ( )),
i i i

c mh f g h h
 

     (12) 

 
1 1

1 1 1( (2 ) ) [ ],
i i

i i i
ch m D I h  

 
      F   (13) 

where constraint penalty   is updated by 
1i i   , and   is empirically set to 3. 

3.3 Channel Reliability 

We introduce the channel reliability weights to DCF tracking. In the framework of DCF, the final 

response is the sum of all the feature channels, irrespective of its discriminability. Each feature's (e.g., 

HoG[11], CN[12] and grayscale feature) response has an order of magnitude difference in scale. To 

avoid the issue with different scales, each channel is considered independently. The cost function may 

be reformulated as 

  
2

2

1

.
cN

d d d

d

h f h g h 


     (14) 

Now, let us introduce the channel reliability weights 1 :( )d d Ncw w  , which can be considered as 

discriminability. Then, the final response becomes the sum of the product of each feature channel's 

response and the corresponding channel weights dw  may be expressed as 
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 ,

1

( )
cN

d d d

d

g h f h w


     (15) 

where channel reliability weights dw  consists of two reliability measurements, namely the channel 

learning reliability 
lrn

dw  reflecting the discriminability of the feature channel[16], which is calculated at 

the filter learning stage, and the channel detection reliability 
det

dw  reflecting the uniqueness[26], which 

is calculated at the target localization stage. The channel learning and detection reliability is estimated 

as 

 max( ),
lrn

d d dw f h    (16) 

and 

 
det

max2 max1 1max(1 ( ) ,0.5),d d dw        (17) 

respectively. We have max1

d  and max 2

d  denoting the two largest peaks in the response map after NMS. 

The joint channel reliability dw  at target localization stage is computed as below  

 
det

,
lrn

d d dw w w    (18) 

and dw  is normalized as 1d
d
w  . 

3.4 Detection and Handling Occlusion 

The occlusion is detected by both the response of filter and the cluster output. The response between 

frames has no uniform scale after being weighted by the reliability of channel. As a result, it can be 

used for finding the maximum value in a same frame but not for comparing between frames. Therefore, 

at the learning stage of frame 1t  , the max response without channel weighting 1

_ max_

t

lrn withoutr   is 

calculated and saved for the next frame. At the location stage of frame t , both the reponses with the 

channel weight 
det_ max_

t

withr  and without 
det_ max_

t

withoutr  are calculated.  
det_ max_

t

withr  is used for location and 

the similarity ratio tr  between the frame t  and 1t   is used for deciding whether occlusions occur 

 1 1

det_ max_ det_ max_( ) .t t t

without withoutr r r      (19) 

Furthermore, the occlusion is detected by both tr  and cluster output as 

 1( ) ( ),t
r occr p      (20) 

where 1r  is the similarity threshold and occ  is the occlusion threshold. Here, p  from cluster output 

represents the fraction of pixels which does not belong to the target cluster but locates in the rectangle 

area of target. The value of occ  and 1r are determined empirically as 1 0.4r   and 0.35occ  . In 

addition, when 10%p  , part of target will be occluded, and the mask of target may be occupied by 

the occluding object. In this case, the model is stopped from updating to prevent it from drifting. 

In a state of occlusion, the occluding object is segmented from the depth image and tracked by a 

new DS-KCF[18] tracker with fixed scale. Searching region is centered on the location of the 

occluding object. The similarity ratio t

cr  of each cluster output result in the searching region is 

calculated instead of calculating every location in the searching region to reduce computation cost. 

Target tracking will be resumed when 

 2max( ) ( ),t
r occr p      (21) 

where,  max

tr  is the maximum of 
t

cr , and 2r  is empirically set as 2 0.2r  . 

4. Experiments 
In this section, our result is reported on the original Princeton dataset since it is closer to the practical 

applications than the rectified version, with synchronization errors in 14% of the sequence[19]. In fact, 

the RGB-D sensor captures depth and colour image independently, and synchronization errors are 

inevitable. 
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HOG feature and CN feature are the most common features in visual tracking methods, CSR-DCF 

exploit the gray feature. For fair comparison, we use the same features and parameter values as  

 

 
Figure 4. Performance comparison of segmentation method. 

 

CSR-DCF except that the padding is set to 5. The weight of the regularization term   and constraint 

penalty term   are set to 0.05 and 5, respectively. Same parameter value included learning rate and 

size of HOG, is adopted as DS-KCF when tracking the occluding object. Our proposed method is  

 
Table 1. Results of IoU and rankings evaluated on the Princeton dataset. 

Human Animal Rigid Large Small Slow Fast Yes No Passive Active

CSRr-gbd++ 3.82 0.77 0.65 0.76 0.75 0.73 0.80 0.72 0.70 0.79 0.79 0.72

our 4.09 0.70 0.65 0.79 0.71 0.73 0.78 0.70 0.64 0.84 0.84 0.67

OAPE 4.45 0.64 0.85 0.77 0.73 0.73 0.85 0.68 0.64 0.85 0.78 0.71

3D-T 4.64 0.81 0.64 0.73 0.80 0.71 0.75 0.75 0.73 0.78 0.79 0.73

RGBDOcc+OF 4.82 0.74 0.63 0.78 0.78 0.70 0.76 0.72 0.72 0.75 0.82 0.70

DSKCF_shape 6.00 0.71 0.71 0.74 0.74 0.70 0.76 0.70 0.65 0.81 0.77 0.70

DM-DCF 6.09 0.76 0.58 0.77 0.72 0.73 0.75 0.72 0.69 0.78 0.82 0.69

DS-KCF 8.00 0.67 0.61 0.76 0.69 0.70 0.75 0.67 0.63 0.78 0.79 0.66

DSKCF-CPP 8.09 0.65 0.64 0.74 0.66 0.69 0.76 0.65 0.60 0.79 0.80 0.64

hiob_lc2 8.55 0.53 0.72 0.78 0.61 0.70 0.72 0.64 0.53 0.85 0.77 0.62

RGBD+OF 9.00 0.64 0.65 0.75 0.72 0.65 0.73 0.66 0.60 0.79 0.74 0.66

motion type
Alg Avg Rank

target type target size movement Occlusion

 

implemented with Matlab 2014a and run on a desktop computer with Intel i7 6700 CPU, 16GB RAM 

and Ubuntu 14.04 OS. The average speed of our proposed method is 6.38 frames per second. 

The evaluation metric of the Princeton dataset is Intersection over Union (IoU). If the ratio of 

overlap area ir  between our results and true bounding boxes is greater than the threshold tr , the 

tracking result is success. There are 100 sequences with 11 categories in the dataset, with 5 videos' 

ground truth being published. The average ranks and IoU can be obtained by uploading our result of 

the 95 videos to the website of the Princeton dataset online. Where it may be seen that in Table 1, the 

average rank of our method is just below the csr-rgbd++. The corresponding results show that our 

method significantly outperforms the DS-KCF, since the spatial and channel reliability map can 

overcome the limitation of boundary effects and the rectangular fixed shape assumption. Compared to 
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DM-DCF, our method performs more robustly at most categories, especially at the categories of 

Animal, Passive and No occlusion. The reason is that more accurate segmentation method and more 

reasonable occlusion handling mechanism are adopted in our method. Our segmentation method is 

compared with the segmentation method using spatial 2D priors and colour segmentation in figure 4. 

The second row and the third row are the results of the colour segmentation method and proposed 

depth image segmentation method, respectively. Proposed depth image segmentation method has the 

significantly advantages. Finally, our method wins three categories: Rigid, Small and Passsive in all of 

the methods. 

5. Conclusion 
This paper proposed a depth information aided constrained correlation filter for visual tracking. The 

mask of target is available using the depth segmentation method. Then, the CCF is constructed with 

the mask, which can eliminate the boundary effects and the limitation of the rectangular fixed shape 

assumption. Our proposed method integrates the depth and the colour image, and gains the better 

performance on the Princeton dataset among all public tracking algorithms. The evaluation of 

Princeton dataset verified that our proposed method is more robust than others.  
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