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Abstract. An efficient torsion element is developed to describe the restrained torsion of thin-
walled beams based on the first-order torsion theory. The element has two nodes, each with 
two degree of freedoms, namely, total rotation and warping function of cross section. The 
element stiffness matrix is directly obtained on the basis of first-order torsion theory without 
the assumption of interpolation function and the derivation of classical finite element method, 
which is more convenient and applicable than the initial parameter method. This element can 
consider not only the warping deformation but also the shear deformation of cross section due 
to restrained torsion. Finally, numerical examples are presented to demonstrate the validity and 
reliability of current torsion element, and the comparison between the results obtained from 
current method and those from other approaches is also illustrated. 

1. Introduction 
When TW beams are subjected to restrained torsion, the warping deformation and its restrained effects 
must be considered, especially for open short thin-walled (OTW) beams [1, 2]. In order to deal with 
the restrained torsion of TW beams including warping deformation and torsion shear deformation, 
several theories and numerical methods are proposed. 

The classical thin-walled beam theory was developed by Vlasov [3]. In this theory, it is assumed 
that the contour of cross section does not deform in its own plane and the shear deformation in middle 
surface can be negligible. As the assumption given above, Vlasov theory is only applicable for a 
slender beam. However, when the beam is OTW short-deep beam and closed thin-walled (CTW) 
beams, the shear deformation should be taken into account [4, 5]. The widely used torsion theory is 
developed by Benscoter, and in this theory, the twist rate function of rotation of cross section was 
substituted by another function [6]. Pavazza [7] developed an analytical approach to the torsion of 
OTW beams with effect of shear deformation according to the assumption that the shear stress was a 
constant along the length of an OTW beam. Mokos and Sapountzakis[8] proposed a non-uniform 
torsion theory and its extended form of doubly symmetrical arbitrary cross section including 
secondary torsion moment deformation effect. Wang et al. [2, 5] proposed the first-order torsion 
theory for TW beams and the corresponding initial parameter solution method; however, the initial 
parameter is tedious in practical application and is not applicable to numerical analysis.  

Apart from the theoretical researches, several TW beam torsion element were proposed to analyze 
the torsion behavior of TW beam. Mohareb and Nowzartash [9] developed a finite element 
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formulation which included both the St. Venant and warping torsional effects of OTW beams. Murín 
and Kutiš [10] proposed a finite element of constant stiffness for torsion with warping of TW cross 
sections, which is based on the similarity to the derivation of transfer matrices for 2nd order beam 
theory for constant cross-section under the shear force deformation effect. Erkmen and Mohareb [11] 
also derived a force-based finite element, in which bimoment fields are assumed to be linear and 
hyperbolic ones. Shin et al. [19] developed a new C0 continuous tapered higher-order beam element. 
The above TW beam element stiffness matrices are obtained based on the classical finite element 
derivation with assumed postulated interpolation function. 

The objective of this paper is to propose an efficient and practical finite torsion element for the 
analysis of restrained torsion of TW beams based on the first-order theory. According to relationship 
between the displacement parameters and force parameters at both two beam ends, the beam stiffness 
matrix can be obtained without delicate derivation, which can consider the effect of warping and shear 
deformation of cross section of TW beams. The validity and applicability of the current torsion 
element is demonstrated through numerical examples. 

2. Restrained torsion of thin-walled beams 
The total rotation of cross section can be divided into free warping rotation Fθ  and restrained shear 
rotation Rθ  [2,5] as shown in figure 1. 

 
Figure 1. Rotation of TW beams subjected to restrained torsion. 

The total free warping torque MF  and total restrained torque MR are corresponding to free warping 
rotation Fθ  and restrained shear rotation Rθ  respectively. The bimoment B is another internal force on 
TW section. These internal forces can be expressed as: 

 F F F k F B FM GI GI GIθ θ θ′ ′ ′= = +  (1) 

 1 1
R R F s R F B R s R B R

R

M EI GI EI GI GI GI
f fρ ω ρ

ω

θ θ θ θ θ θ′′′ ′ ′′′ ′ ′ ′= − = = − + = +  (2) 

 FB EIωθ ′′= −  (3) 
where, F k BI I I= +  and RI Iω α=  denote the stiffness of free warping part and restrained shear part of 
CTW beam respectively, and kI is St. Venant constant; BI  is the Bredt’s second formula; Iω  is 

sectorial inertia moment of cross section of CTW beam; ( ) 1
s s BI I f Iρ ρ ωα

−
= +  reflects the effect of 

closed section type on the restrained torsion of CTW beams; fω  is the torsion shear coefficient of 
OTW sections corresponding to CTW sections and can be used to obtained the torsion shear 
coefficient for CTW sections; sIρ is tangential polar moment of inertia.  

The differential equation of restrained torsion of thin-walled beams can be obtained by: 
 IV

F F R FGI EI mθ θ′′ − = −  (4) 
When external distributed torque m=0, the homogeneous solution of equation (4) and total rotation 

are obtained: 
 1 2 3 4sin coshF C C x C x C xθ κ κ= + + +  (5) 
 5 2 3 1 4 1sin coshC C x C x C xθ μ κ μ κ= + + +  (6) 



ICCAE 2018

IOP Conf. Series: Earth and Environmental Science 233 (2019) 032029

IOP Publishing

doi:10.1088/1755-1315/233/3/032029

3

 
 
 
 
 
 

where, 1μ  is the torsion shear influence parameter. 

3. Restrained torsion element of TW beams 
In order to solve the tediousness and inapplicability, an efficient torsion element is developed based on 
the first order torsion theory formulae. The current efficient torsion element has two nodes as shown in 
figure 2, in which all the rotations and stress resultants at both nodes are given and the directions of 
both rotations and resultants are positive. In current element, each node has two degree of freedoms, 
namely, total rotation θ  and free warping twist rate Fθ ′  of TW section. The corresponding stress 
resultants are total torque M and generalized bimoment B . The formula of bimoment B  will be given 
below. 

 
Figure 2. Torsion element of TW beams 

The nodal displacement vector u can be expressed as: 
 { }T

i Fi j Fjθ θ θ θ′ ′=u  (7) 
The corresponding nodal force vector F is given by: 
 { }T

i i j jM B M B==F  (8) 

where , iB  and jB  are generalized bimoment at node i and j respectively. In first-order torsion theory, 
bimoment B is related to the second derivative of free warping rotation Fθ  rather than the total 
rotation θ . In order to reflect the stress resultant in torsion element on the total rotation level, the 
generalized bimoment B  is defined as: 

 1B Bμ α= −  (9) 
According to equations (5), (6) and (7), the relationship between nodal displacement vector and 

constant vector is: 

 ( ) ( )
( ) ( )

1 1

2

1 1 3

4

1 0 0
0 1 1 0
1 sinh cosh
0 1 cosh sinh

u

C
C

l L L C
L L C

μ κ

μ κ κ μ κ κ
κ κ

   
   

  = =            

u T C  (10) 

In view of equations (1), (2), (8) and (9), the relationship between nodal force vector and constant 
vector can be obtained as: 

 

( ) ( )

1

1 2

3

1 1 4

0 0 0
0 0 0
0 0 0
0 0 sinh cosh

F

F
F

GI C
EI C

GI C
EI L EI L C

ω

ω ω

κμ α

κ κ μ α κ κ μ α

−   
   −   = =            

F T C  (11) 

Substituting equation (11) into equation (10) yields: 
 =F Ku  (12) 

where, K is the stiffness matrix of current torsion element, which is given by: 
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 
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− − − − 
 =
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 
 −  

K (13) 

where L is the length of torsion element; the formula of C is written as 

 
( ) ( )( )1sinh 2 cosh 1

FGIC
L L Lκ κ μ κ

=
− −

 (14) 

4. Numerical examples 
On the basis of the above derivation, a torsional element analysis program is developed. Numerical 
examples of TW beams are given to verify the accuracy and applicability of the current efficient 

4.1. OTW example 
An I-shaped beam with two ends fixed is provided to demonstrate the accuracy and applicability of the 
current efficient to OTW beams. The torsion shear coefficient of this I-shaped section is 1.2. As shown 
in figure 3, the external concentrated torque 3600NmM =  is applied on the shear center of I-shaped 
section at midspan. The elastic modulus E   and Poisson’s ratio ν  are 206GPa and 0.3 respectively. 
The analysis results of current element are compared with those of other methods, such as Vlasov 
theory, Benscoter theory, first-order torsion theory and ABAQUS. The finite element model is shown 
in figure 4; 19200 S4R shell elements are generated and kinematic coupling type is used in shell 
element analysis. 

 
Figure 3. Torsion element of TW beams 

The variation of rotations along beam length is plotted in figure 5, and it can be seen that the total 
rotations given by efficient element are closer to those from Abaqus than other methods. For OTW 
sections, the results obtained from Vlasov theory do not consider the effect of restrained shear 
deformation. Therefore the results of Vlasov theory can be used as a reference to study the effect of 
restrained shear rotation. 
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Figure 4. Torsion element of TW beams        Figure 5. Torsion element of TW beams 

4.2. CTW example 
In order to investigate the accuracy and applicability of the current efficient element to the restrained 
torsion of CTW beam, a two-end-fixed beam with box cross section is subjected to external 
concentrated torque, as shown in Fig. 10. The concentrated torque M is 30000Nm, and the elastic 
modulus E and shear modulus G are 2.1×1011 N/m2 and 8.0×1010 N/m2 respectively. The length of 
thin-walled beam l is 7m. The dimensions of cross section are given in figure 6, and the torsion shear 
coefficient of this box section is 1.00295. 3640 S4R shell elements are generated and kinematic 
coupling type is used in shell element analysis. 

 
Figure 6. Torsion element of TW beams 

The variations of rotation obtained from Abaqus, first-order theory, efficient element, Benscoer 
theory are illustrated in figure 7. And the deformed shape of box beam obtained from Abaqus is shown 
in figure 8. It can be seen from figure 7 that the rotations from these four methods are very close. 

     
Figure 7. Variation of rotation along beam length        Figure 8. Deformed shape from Abaqus 
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5. Numerical examples 
In this paper, an efficient torsion element of TW beams is developed. This element is not based on the 
derivation of classical finite element method. The element stiffness matrix is directly obtained through 
the relationship of end displacements and forces which have been obtained by first-order torsion 
theory. The efficient torsion element could consider the effect of warping and shear deformation and is 
more convenient and applicable than the initial parameter method. The expression form of current 
element stiffness is concise. Numerical examples have demonstrated the validity and applicability of 
the current efficient torsion element. 
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