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Abstract. The results of studies of atmospheric aerosol over the territory of Russia are of great 
interest from the point of view of ecological and climatic problems. The paper presents the results 
of spatial and temporal variability of Aerosol Optical Depth (AOD) over the European territory of 
the Russian Federation in the period 1999 – 2016 yy. The assessments were carried out using the 
original AOD extraction method based on ground-based observations of the Russian actinometric 
network, and also on the satellite observations of MODIS. The general regularities of spatial 
variations in the aerosol optical depth over Russia are revealed: a monotonic decrease from the 
southwest to the northeast with localized areas having different aerosol loads due to the global and 
regional factors of their formation. The AOT increase in spring and summer is associated with a 
seasonal increase in temperature and humidity and with changes in the underlying surface. 
“Purification” of the atmosphere from aerosol is caused by the absence of large volcanic 
eruptions and by industrial “calm” conditions during the last decade. Negative tendencies are less 
pronounced in the fall than in spring and summer. To compare the atmospheric AOT values 
obtained from the MODIS, AERONET and GMS data, we have compiled a combined archive of 
daily AOT values synchronized in pairs for the 3 types of observations (GMS, MODIS and 
AERONET): "Aerosol optical thickness of the atmosphere by satellite and ground observations ". 
The data of the comparison of terrestrial and satellite data for AOD are presented only in averaged 
form and need further consideration. 

 
 
1. Introduction 
The aerosol optical thickness of the atmosphere (AOD) is an important parameter in assessing climatic 
changes: changes in the temperature of the underlying surface and changes in the incoming total solar 
radiation [1-3]. The factors causing the space-time variations of AOD are diverse both in terms of the 
degree of impact and the sign of the changes they make to the flux of solar radiation coming to the Earth's 
surface: volcanic stratospheric sulfate aerosol, anthropogenic industrial and heating aerosol, black and red 
carbon entering atmosphere due to forest, tundra and marsh fires, and finally, a mineral aerosol of desert 
and steppe regions, carried along with the air mass, depending on the type of atmospheric circulation, 
characteristic for this region. At present, work is under way to analyze the possibilities of using satellite 
data to estimate the spatio-temporal distribution of aerosol, when satellite data (for example, MODIS) and 
ground observations (AERONET networks and/or actinometric networks of the Russian Federation) are 
considered spatially over 10-year time intervals changes in AOD of a regional nature and the causal 
factors of these changes are identified [4-20]. Ultimately, the variability of AOT is used to simulate the 
temporal evolution and regional changes in the radiation effects of an aerosol in the atmosphere,  radiative 
forcing at the Earth's surface [21-26].  
 
2. Research objective 

The aim of the work in the framework of the above problems is to analyze the systematic spatial 
and long-term temporal changes of AOT over the European territory of Russia with the characteristic 
features of the variations and the sources of aerosol. At the same time, we used both data from network 
ground-based actinometric observations of ROSHYDROMET (GMS) [27] and satellite data 
(http://modis.gsfc.nasa.gov), examples of which are given in [28-31]. 
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3. Analysis of AOD observations over ETP 
Network observation stations system and empirical data will be described now. A map showing 

the location of 18 actinometric stations of the Russian network for which the AOD of vertical 
atmospheric column were estimating for a wavelength of 0.55 � is presented in Figure 1. These 
stations cover a large part of European territory of Russia and are located outside the zones of direct 
local anthropogenic sources of industrial and municipal aerosol emissions (suburbs, rural areas, uplands, 
etc.). An analysis of the AOD of a vertical atmospheric column can be made on the basis of data on the 
integral atmosphere transparency (P), because P variations are, to a great extent, determined by the 
aerosol component of the attenuation of direct solar radiation; other components of the attenuation 
(water vapor and other gases) have little effect on its time variations. The integral air transparency: 
 

P = (S/S 0 )1/2                                 (1) 
 
where S is the direct solar radiation to the normal to flux surface, reduced to the average distance 
between the Earth and the Sun and a solar altitude of 30°; S0 is the solar constant equal to 1.367 
kW/m2. On the basis of 1) data on the homogeneous (calibrated against a single standard and 
obtained with a unified method) observational series of direct solar-radiation fluxes at the land surface, 
2) some semi-empirical approximations, 3) evaluations of the integral (total) and aerosol transparency, it 
is possible to analyze variations in the AOD of a vertical atmosphere. The procedure for extracting AOD 
and subsequent estimates is presented in [4-5]. So now we shall analyze variations in the AOD of a 
vertical atmosphere on the basis of the 1999–2016 y.y. observational data obtained at 18 actinometric 
stations. 
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Figure 1. The map is a diagram of the location of 18 stations (SMS) on ETP: Sochi (43.5, 39.8), 
Krasnodar (45.1, 39.0), Gigant (46.5, 41.3), Tsimlyansk (47.7, 42.1), Kamennaya step (51.1, 40.7), 
Ershov (51.4, 48.3), Nizhnedevetsk (51.6, 38.4), Vyasovye (55.8, 48.5), Pamyatnya (56.0, 65.7), Verhnee 
Dubrovo (56.7, 61.1), Nolinsk (57.6, 49.9), Ust Vym (62.2, 50.4), Arkhangelsk (64.6, 40.5), Umba (66.7, 
34.3); Kotkino (67.6, 51.2), Eletskaya (67.1, 64.1), Apatity (67.6, 33.3), Bugrino (68.8, 49.3). 
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Figure 2. Spatial distribution of the values of Annual, April and July (from top to bottom) values of AOD 
over  ETR; by the data of the actinometric terrestrial network of the Russian Federation. Observation 
period -- 1999-2016 yy.
 
 

The spatial variations of the AOT are shown in the diagrams in Figure 2. To interpolate the data 
of the stations shown in Figure 1. MATLAB package is used for the region under consideration: the 
option of creating a uniform grid for the ETR region in question, the option of performing bilinear 
interpolation (horizontally and vertically) of the data of 18 stations on the territory (40 ° -70 ° N, 30 °-70 
°), the projection of the function T = F (�, �) onto the data grid, where � and � are the latitude and 
longitude respectively for each of the observation points. The spatial distribution of the mean values (for 
annual, April and July AOD) corresponds to the results obtained earlier [4-5] for the mean long-term 
values of the aerosol optical thickness of the atmosphere over the time interval 1976-2011 yy. In the post-
volcanic period 1999-2016 yy. there is also a decrease in AOD from southwest to northeast, the 
localization of regional tropospheric sources of aerosol is not visible, except for Arkhangelsk, for which 
there is a summer increase in AOD. Perhaps there is a systematic local source of aerosol release into the 
atmosphere. The source may be due to both natural summer fires and anthropogenic industrial emissions 
in this area. 

Long-term series of mean monthly values of AOT obtained from data of the terrestrial 
actinometric network of the Russian Federation (18 GMS stations) and time series of AOD based on the 
data of the MODIS (Moderate-resolution Imaging Spectroradiometer) satellite spectrometer for a 
wavelength of 550 nm with a resolution of 1 × 1 ° are also investigated here.  
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Spatial distributions of multi-year variability of aerosol optical depth (AOD) over ETR, 
tendencies of temporary changes, in Annual, April and July (from top to bottom) (in absolute values over 
10 years) are presented in Figure 3. 
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Figure 3. Spatial distributions over ETR of multi-year variability of aerosol optical depth (AOD): 
"trends" of temporary changes in Annual, April and July (from top to bottom) (in absolute values over 10 
years).  Observation period 1999-2016; data of the actinometric terrestrial network (GMS).

At the majority of observation points, the process of "purifying" the atmosphere from the aerosol 
occurs (see also [32-33]). In general, the trend of AOT changes is negative for the Russian region (Figure 
3), while the value of the absolute value of the trend (over 10 years) varies from (-0.10) in the south-west 
of the ETP to (+ 0.02) in the north-east of the ETR, respectively. The average value of the absolute value 
of the annual AOT trend is -0.04 for 10 years, the maximum is 0.02 for 10 years, and the minimum value 
is -0.10 for 10 years, with a determinism coefficient of no more than 0.5.  The average values of AOD  for 
the region and the simplest statistics are given in Table 1.  
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Table 1. Average values of AOD and average tendencies of AOD changes over  ETR for terrestrial (1999-
2016 yy.) and satellite data MODIS (2002-2016 yy.) 
 
 

AOD Yearly values April values July Values 
AOD (terrestrial GMS 

network) 
range of variation, 
standard deviation 

0.13 
 

(0.22-0.08);  
0.04 

0.13 
 

(0.25-0.05);  
0.04 

0.16 
 

(0.28-0.08);  
0.05 

Trend, referred to a 10-
year interval (terrestrial 

GMS network) 

 
-0.03 

R2 = 0.50 

 
-0.07 

R2 = 0.61 

 
-0.03 

R2 = 0.50 
Trend (% per year) -3.6 -6.1 -2.0 
AOD (satellite data 

MODIS) 
range of variation, 
standard deviation 

0.16 
 

(0.23-0.12) 
0.03 

0.16 
(0.31-0.07);  

0.07 

0.22 
(0.35-0.14);  

0.05 

Trend, referred to a 10-
year interval, (MODIS 

satellite data) 

 
-0.0005 
R2 << 

 

 
-0.005 

R2 = 0.41 

 
+0.002 
R2 << 

 
 
 

The latitudinal-temporal variations of the Annual, April and July AOD shown in Figure 4 are due 
to the following factors: 

1. The obvious negative tendencies of AOD changes in time are manifested in all seasons of the 
year, which indicates the global processes of atmospheric purification from aerosol in the post-
volcanic period. The average gradients over the past 18 years were 0.06 / 18 years (for annual 
values), 0.07 / 18 years (for April) and 0.04 / 18 years (for July); 

2. The values of AOD as a whole decrease monotonically in all seasons in the direction from the 
south to the north: the spatial differences for the data presented by us are 0.08 (annual AOD), 0.08 
(April AOD) and 0.12 (July AOD), 0.02 (February AOD), which indicates the circular nature of 
the formation of a spatial pattern of the distribution of AOD; 

3. The growth of AOD in the spring-summer seasons is formed under the influence of seasonal 
changes in the nature of the transfer of air masses to the region (ETR) from the southeast regions 
with a high aerosol content, seasonal changes in temperature, humidity and the state of the 
underlying surface. This is especially apparent for southern stations, here in the summer, tropical 
air masses predominate, saturated with aerosol and moisture from the tropical and desert regions 
of Eurasia. Spring increases are due to the disappearance of the snow cover and the change in the 
dominant Arctic air masses to temperate or tropical ones; 

4. In all seasons, especially in summer, aerosol inhomogeneities, localized in time and space are 
manifested and are more pronounced in summer seasons. 
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Figure 4. Spatio-temporal variations of Annual, April and July (from top to bottom) AOD on ETR; data 
(GMS) of the actinometric terrestrial network. Observation period -- 1999-2016 yy. 

 
 
Table 1 summarizes the above ground network data. In addition, the satellite data that was 

downloaded via the specialized server Giovanni https://giovanni.gsfc.nasa.gov/giovanni, in particular, the 
time series of the average monthly values of AOD for MODIS TERRA (MOD08_M3_v.6) (personal 
communications) are given. In principle, a joint analysis of aerosol weakening by independent observing 
systems makes it possible to obtain more justified estimates of time trends and spatial changes in AOD, 
but in practice the analysis of data obtained by independent systems is a complex and ambiguous 
comparison problem in the absence of reference data. More detailed comparisons, as well as the reasons 
for the discrepancies, are necessary and will be carried out in the future. 

 
 

4. Database "Aerosol Optical Thickness of the Atmosphere from Satellite and Surface 
Observations"

Based on the presented estimates from observational data, the relevance of comparing the AOD 
values obtained from the data of independent observational systems is obvious. To compare the 
atmospheric AOD values obtained from the MODIS data, AERONET and GMS, we generated a 
combined archive [34] of  daily AOD values synchronized in pairs for the 3 types of observations (GMS, 
MODIS and AERONET). Synchronized series of AOD were obtained mainly for the warm season (in the 
period from March-April to September-October) and practically absent in the winter months. About 15 
pairs of comparison have been created. The data of the third level (daytime) for AOT 
(Optical_Depth_Land_And_Ocean) for a wavelength of 550 nm with a resolution of 1 × 1 ° were used. 
An example of a comparison of satellite and ground-based observations of AOD obtained at the some 
ETR stations is presented in Table 2. During the analysis, the "manual" culling of the AOD values was 
carried out, the situations when the AOD differed by more than 3 times were discarded.  
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Table 2. An example of comparing ground-based and satellite AOT values (2002-2016 y.y.) 
for six stations located on the ETR; stations are ranked in latitude from south to north; the row length and 
standard deviation from the average are also indicated 
  

 AOD AOD (pre-filtering) 
 GMS MODIS GMS MODIS 

Sochi (43.5, 39.8) 0.17 (0.13) 0.18 (0.14) 0.18 (0.11) 0.17 (0.10) 
Number of days 2107 2107 1578 1578 

Krasnodar (45.1, 39.0) 0.20 (0.11) 0.19 (0.14) 0.19 (0.10) 0.20 (0.12) 
Number of days 2199 2199 1763 1763 

Gigant (46.5, 41.3) 0.16 (0.11) 0.18 (0.14) 0.17 (0.11) 0.17 (0.12) 
Number of days 1837 1837 1254 1254 

Nolinsk (57.6, 49.9) 0.11 (0.09) 0.19 (0.23) 0.13 (0.09) 0.15 (0.11) 
Number of days 921 921 573 573 

Umba (66.7, 34.3) 0.08 (0.05) 0.14 (0.16) 0.09 (0.05) 0.11 (0.07) 
Number of days 886 886 632 632 

Bugrino (68.8, 49.3) 0.11 (0.07) 0.15 (0.16) 0.12 (0.06) 0.13 (0.08) 
Number of days 837 837 594 594 

 
 

 
 

As can be seen, the average AOT values for terrestrial and satellite data with a sample of a thousand or 
more days (for conventionally “southern” 3 observation points) turned out to be close both in terms of 
average values and in the range of variations (standard deviation from the average for synchronized series 
). The average discrepancies were 6% for synchronized rows and 0% for rows with pre-filtering. For 
conventionally “northern” observation stations, the corresponding values amounted to tens of percent, 
even in the case of preliminary filtering. It should be noted that averaging of several hundreds years and 
more is required for parameterization of models and validation of results in regional climatic schemes [1-
3]. At the same time, the trend of temporary changes in the time interval 2002-2016 y.y. are negative, but 
statistically not significant. 
 
5. Conclusion 
1. The spatial distribution of AOD values, average for the 18-year-old post-volcanic review period, 
corresponds to the model of the global distribution of atmospheric aerosol over Eurasia, presented in the 
3rd and 4th IPCC reports. This is manifested in the decrease of AOT from southwest to northeast by ETR 
in the presence of regions of constant high aerosol turbidity in the south-west of the ETR, due to the type 
of seasonal atmospheric circulation in these regions. 
2. The trends of long-term changes in AOD over the past 18 years are steadily negative: the atmosphere 
clears the aerosol. Negative tendencies of AOD changes coincide with trends typical for developed 
countries of Europe and North America, they are caused both by stabilization of production facilities and 
by technologies of atmospheric purification from aerosol emissions. 
3. The average daily values of AOT for terrestrial and satellite data with a length of rows of several 
hundred or a thousand days are quite close both in terms of average and in the range of variations (for 
example, 6 stations per ETR). Note that it is averaging over several years or more that is required for 
parameterization of models and validation of results in regional climatic schemes. 
 
 

The work was carried out according to RFBR projects No. 10-05-01086 and No. 15-05-05803.  
The author expresses sincere gratitude for consultations and assistance in mastering the methodology of 
working with time series of AOD on MODIS satellite data using a specialized server 
https://giovanni.gsfc.nasa.gov/giovanni, a senior researcher at the IAP RAS. A.Obukhov to S.Sitnov. 
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