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Abstract. Here we present the results of measurements of the atmospheric methane 

concentration and its isotope composition (δ
13

CCH4) in the East Arctic and Far East Seas during 

the cruise in the autumn 2016 by two different types of analyzers. Open path LI-7700 and LI-

7500 analyzers measuring correspondingly methane (CH4), and carbon dioxide (CO2) and 

water vapor (H2O) have high time resolution (10Hz) that allow to fix instantaneous values of 

gas concentration. We obtained high CH4 concentration (more than 8 ppm) at the location of 

methane bubbles yields from sea water to atmospheric air. However, due to contamination and 

icing of the mirrors of these analyzers, significant part of data was rejected for analysis. The 

data sets of contact gas analyzer G2132-i shows good reliability but the peaks of CH4 

concentration obtained by G2132-i are lower (up to 3.7 ppm) and longer due to instrument's 

slower responding time. For 10-min averaging, data sets of both CH4 analyzers gives good 

agreement, the differences between two types measurements of methane values are less then 

analyzers' accuracy. 

 

 
1. Introduction 

Subsea permafrost and hydrates in the Eastern Arctic seas shelf are significant methane pool and 

potentially can be large source of atmospheric methane emissions [1]. By now a lot of localized seeps 

of methane in East Arctic seas have been found [2, 3], but the quality of the obtained experimental 

data is currently insufficient to reliable estimate CH4 emissions into the atmospheric air, which are 

still very poorly quantified [1, 4, 5]. Satellite measurements of the concentration covering the entire 

globe, but do not have sufficient accuracy [6]. Arctic CH4 source can be identified by isotopic 

signature [7-10], but measurements of δ
13

CCH4 are even rarer. Thus, it is very important to expand the 

experimental studies and analyze new full-scale data on methane concentrations in the Arctic. 

Atmospheric carbon dioxide, water vapor, and methane mixing ratios and changes in the 
13

C:
12

C 

ratio in CH4 (reported a changes relative to a reference ratio and denoted as δ
13

CCH4) were measured 

during ship campaign from 23 September to 3 November 2016 in the Laptev, East Siberian and 

Chukchi Seas and as well as in the North Pacific and in the Sea of Japan. In this study we pay 

attention to the methodological aspects of received results. 
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2. Measurements and methods 

The measurements were made from aboard the research vessel (R/V) "Akademik M.A. Lavrentiev" 

(78
th
 cruise). The R/V route started from the Tiksi port and gone through the East Arctic seas: the 

Laptev and East Siberian seas, than through the Chukchi, Bering and Japan seas to the Vladivostok 

port. Route map is shown at Figure 1. 

An automated measuring complex was used for direct observations of surface air composition. It 

included the following instruments:  

1) Cavity-Ring-Down Spectrometer (CRDS) produced by Picarro Inc., USA (model G2132-i) to 

measure concentrations of methane, carbon dioxide, water vapor and isotopic signature; 

2) methane concentration analyzer with an open optical path, model LI-7700, produced by Li-Cor 

Inc., USA; 

3) carbon dioxide and water vapor concentrations analyzer with an open optical path, model LI-

7500, produced by Li-Cor Inc., USA. 

Target parameters of measuring system, including time resolution are presented in Table 1. 

According to this table, the concentrations of methane and carbon dioxide as well as content of water 

vapor were measured synchronously by two analyzers. As it will be shown below, this significantly 

improved the quality and reliability of the data sets. 

 

 

 
 

Figure 1. Route of 78
th
 cruise of R/V "Akademik M.A. Lavrentiev" with dates (dd.mm) of the R/V 

locations along the ship's trajectory. 

 

The core of the G2132-i is Picarro’s unique Cavity Ring Down Spectroscopy (CRDS) technique, a 

time-based measurement that uses a laser to quantify spectral features of gas phase molecules in a 
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small optical cavity, which has an effective laser path length of up to 20 kilometers. Characteristics of 

G2132-i are shown in Table 2. 

Table 1. Used analyzers and measured parameters. 

# Analyzers 

Time 

resolution, 

sec 

δ
13

CCH4 CH4 CO2 H2O 
Atmosphe-

ric pressure 

Air 

temperature 

1 G2132-i >30 ● ● ● ● 

2 LI-7700 0.1 ● ● ● 

3 LI-7500 0.1 ● ● ● ● 

Table 2. G2132-i characteristics for HP (High Precision) mode 

# 
Performance  

Specifications 
δ

13
CCH4 CH4 CO2 H2O 

1 Dynamic Range - 1.8-12 ppm 200-2000 ppm 
0-2.4 % 

guaranteed range 

2 Precision <0.8 ‰ 
5 ppb + 0.05% of 

reading 

1 ppm + 0.25% 

of reading 
100 ppm 

3 
Max Power Requirements, 

W 
< 260 W start-up (total) 

4 Dimensions, mm 
Analyzer 431.8 x 177.8 x 445.7 

External pump 90 x 102 x 280  

5 Weigh, kg 25.4 

We made an integrated constructional unit for the G2132-i analyzer to simplify its installation on 

board the R/V. It included the instrument itself, uninterrupted power supply (model PowerCom Smart 

King Pro SKP-1000), the GPS (model Global Sat BU-353G GPS/GLONASS), additional N86 KNE 

compressor and rotameter, the Transcend TS500GSJ25M2 external hard disc, the 19" keyboard with 

touch pad, and 15" TFT video monitor. 

The main features of this unit were maximum simplification of installation and maximum 

operating automation. Using of the additional compressor within the unit is necessary due to long air 

inlet tubing, so the G2132-i instrument belongs to the class of contact gas analyzers, and it is 

necessary to supply the analyzer by air and pump it through its internal cavity. 

Besides contact analyzer, we used the LI-7700 and LI-7500 open path analyzers, which measure 

the concentration of gas impurities in the open air at the place of installation. The LI-7700 uses a 

single-mode tunable near-infrared laser source, measuring the absorption of infrared laser radiation at 

the wavelength of absorption band of CH4 between the mirrors of the instrument. LI-7700 also uses 

so-called Wavelength Modulation Spectroscopy (WMS). This feature provided high performance and 

reliability of the instrument. Main technical parameters of the LI-7700 are shown in Table 3. 

Open path CO2/H2O Analyzer LI-7500 also uses the principle of measuring the absorption of 

infrared radiation at wavelengths corresponding to the absorption bands of carbon dioxide and water 

vapor. This instrument has small size and weight. The main operational parameters of the analyzer are 

shown in Table 4. 

All analyzers have comparable characteristics of precision, in particular, of methane concentration, 

that is typically 5÷10 ppb. So, at an average level of methane concentration over the water surface of 

about 2 ppm, the relative error is approximately 0.25÷0.5%.  
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Table 3. Characteristics of open path LI-7700 analyzer. 

# Performance Specifications CH4 

1 Dynamic Range 0-40 ppm for 25°С, 0-25 ppm for -25°С 

2 Precision 5 ppb 

3 Linearity 1 % of reading 

4 Power Consumption, W 16 

5 Dimensions, mm 143.3 х 143.3 х 828.0 

6 Weigh, kg 5.2 

Accuracy at constant temperature: typically <1%, maximum < 2% 

Table 4. Characteristics of open path LI-7500 analyzer 

# 
Performance Specifications CO2 H2O 

1 Calibration Range 0-3000 ppm 0-6 % 

2 Precision 1 % of reading 2 % of reading 

3 Max Power Consumption, W: 30 

4 Dimensions, mm 65.0 х 65.0 х 300.0 

5 Weight, kg 0.75 

The G2132-i was installed in the vessel laboratory with air intake at the ship mast at 11 m above 

the water level. The analyzed air came into G2132-i through the Teflon tubing of 30 m long and 10 

mm inside diameter, with an air flow of about 3 l/min. Open path analyzers LI-7700 and LI-7500 were 

installed on the vessel mast, together with the acoustic anemometer that was also a part of the 

measurement complex. The general views of the complex is shown in Figure 2. 

(а)      (b) 

Figure 2. G2132-i in the R/V laboratory (а); open path LI-7500 and LI-7700 analyzers, acoustic 

anemometer at the mast (b). 
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Calibrations of the G2132-i were carried out according to the secondary standard, which was a 1-

liter compressed air cylinder provided by the Norwegian Institute for Air Research (NILU) with 

known CH4 and CO2 and δ
13

CCH4 values. The relative error of that measurements did not exceed 
0.03% for methane and 0.1% for δ

13
CCH4. During measurements in NILU, a standard known as 

NOAA04 [11] for CH4 was used. Calibration for δ
13

C was made by the method described in [12]. 
Further, we use a 10-liter cylinder with calibration gas of Russian State standard reference sample 

10700-2015 produced by "Linde Gas Rus" and 1-liter cylinder filled with compressed air with a 

certain concentration of methane. According to the Russian technical specifications 2114-009- 
05015259-2015 for calibration gas, the relative errors of concentration are significantly higher than 

the precision of the analyzer. For the calibration gas provided by "Linde Gas Rus" (cylinder No. 

516934, passport No. 290), the concentrations errors are presented in Table 5. 

This Table shows that the errors in the methane concentration in the calibration gas is about 4%, so 

this mixture cannot be directly used to calibrate the G2132-i with a significantly better accuracy. 

Because of the G2132-i was previously calibrated for the secondary NILU standard, we measure the 

concentration of CH4 in the cylinder with calibration by analyzer. As a result we obtained a low value 

of the standard deviation (0.0006 ppm) for period of measurements 10 minutes and 10 seconds 

averaging. So, we obtained the methane concentration in the cylinder with calibration gas C0=2.0471 

ppm that was used for further calibrations. 

Table 5. Technical characteristics of calibration gas provided by "Linde Gas Rus" 

# Gas Impurity Units Mixing ratio Absolute error 

1 CH4 ppm 2.09 0.08 

2 CO ppm 1.98 0.10 

3 CO2 ppm 409 14 

4 C3H8 ppm 1.13 0.06 

To estimate the long-term stability of analyzers readings we made several calibrations of the 

G2132-i during 2015-2017 years. The results are shown in Figure 3. Variations of obtained values are 

less then precision of analyzer (±5 ppb). In Figure 3, this is additionally illustrated by horizontal dash-

lines, which correspond to the average values for all calibrations for each standard. 

Similarly we calibrate the G2132-i for CO2 and δ
13

CСН4 (see Fig. 3), using the same standards. The

obtained results confirm the conclusion that the long-period (several months or more) drift of the 

calibration coefficients of the G2132-i does not exceed the accuracy value declared by Picarro Inc. As 

a result of the calibration, we confirmed the conclusion that the used contact gas analyzer is 

characterized by a sufficiently small short-period drift of the readings.  

To calibrate the LI-7700 we use the same calibration gas of "Linde Gas Rus". The calibration was 

carried out using the chamber (shroud), supplied with the LI-7700 by its manufacturer, into which the 

optical trace of the analyzer is placed. The chamber was filled in with a calibration mixture at a flow 

rate of about 1 liter/min until a stable reading of the instrument was reached, after which the 

calibration was continued for another 10 minutes. The calibration results are shown in Table 6. 
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Figure 3. Calibrations of G2132-i 

Table 6. Results of LI-7700 calibration 

# Averaging, sec CH4, ppm σCH4, ppm 
Calibration coefficient 

 С0= 2.0471 ppm 

1 10 2.0998 0.0007 0.9749 

2 1 2.0998 0.0009 0.9749 

3 0.1 2.0998 0.0017 0.9749 

Due to the previous measurements of calibration gas by the G2132-i (that was calibrated by the 

secondary NILU standard (see above) the calibration coefficient for the LI-7700 was found to be 

equal 0.9749. 

All measured concentration values of gas components obtained during the ship campaign were 

corrected according to calibration coefficient. Further, we calculated data sets with 1 second, 10 

seconds, 1 minute and 10 minutes averaging. Time series of CH4 mixing ratio and δ
13

CСН4 (10 min

averaging) and the geographical objects of the ship course are shown in Figures 4.  
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Figure 4. G2132-i time series of δ
13

CСН4 (upper plot) and G2132-i and LI-7700 time series of CH4

(bottom plot) in ambient air during the ship campaign of 2016. 

As will be shown further, the obtained calibration coefficient for LI-7700 analyzer makes very 

similar data of open path analyzer and data of G2132-i. The resulting variance is less than the 

accuracy of analyzer. That fact proves the correctness of the LI-7700 calibration. 

3. Discussion

Analysis of LI-7700 data sets shows the strong sensitivity to the pollution and icing of mirrors 

forming on its open optical path. The analyzer software automatically calculates the RSSI (received 

signal strength indicator) parameter. When RSSI is less than 10% the analyzer readings are considered 

as unreliable. 

Practically, during decreasing of RSSI to 35...40% and less, the difference between LI-7700 and 

G2132-i readings increases more than several percents. When the RSSI is more than 50% there are a 

complete coincidence of all analyzers. However, due to contamination and icing of the LI-7700's 

mirrors, only less than 20% of obtained data during the ship campaign are reliable. These remains of 

LI-7700 data are shown at Figure 4. The instrument's build-in mirrors icing protection facilities 

(washing and heating) were not used during the cruise. 

Due to the same reason, the LI-7500 data on CO2 and H2O concentrations were rejected for 

analysis, and not shown in this study. Figure 2 clearly shows the icing of the exterior surfaces of the 

analyzers during the cruise. 

Figure 5 shows time series of CO2 and water vapor values obtained by G2132-i during the route. 

The main feature of almost constant background CO2  value during all the route with some peaks, 

caused possibly by local air contamination. The more detailed analysis of CO2 and water vapor 

behavior will be made in following publications. 

It is actual to compare available data sets in methane seeps locations (75°N, 160°E). The vessel 

was located in that place from 11 to 13 October 2016. According to the LI-7700 readings, the methane 

concentration above the water surface is characterized by a large number of CH4 peaks with value 

from 2-3 ppm to more than 8 ppm. The duration of this peaks is tens of seconds. Raising of methane 

bubbles from the water was visually detected from the board of the vessel. According to sonar data 
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from the vessel, methane bubbles came directly from the sea bottom, as the depth in the observation 

area reached 45-50 meters. In the same time the peaks of CH4 concentration obtained by G2132-i 

were lower (up to 3.7 ppm) and longer in time due to slower responding time of the G2132-i 

instrument. It should be noted that the observed peaks of CH4 concentration have stochastic character 

and strongly depend on the response time of the analyzers and observation conditions. 

 

 
Figure 5.  G2132-i time series of CO2 (upper plot) and water vapor (bottom plot). 

 

It is necessary to pay special attention to the fact that we obtain practically complete coincidence 

of the peaks of methane concentration using two essentially different types of gas analyzers: contact 

and open path. This means that the dithering of the signal is almost excluded in spite of pumping 

atmospheric air through the gas path, at least on the time intervals of about 10 seconds.  

In our case, the time delay between the concentration peaks recorded by two analyzers is a result 

of the passage of air through the tubing from the air inlet to the G2132-i (it takes about 46 seconds) 

and the possible difference in the system clock of the instruments and their recording computers. This 

delay was calculated from the location of the peaks on the time axis (approximately 190 seconds), 

further the data sets were recalculated to bring them to a single time scale. 

The G2132-i instrument with a response time of almost 1 minute, actually integrates each peak, 

underestimating its amplitude and increasing the duration. This phenomenon is clearly illustrated in 

Figure 6 (a), which presents the case of the release of a methane bubble from the water near the 

vessel.  

Nevertheless, the G2132-i data can be used to determine the average methane concentration above 

the water surface. This is illustrated in Figure 6 (b), which presents the same fragment of observation 

data as in Figure 6 (b), but with averaging of 10 minutes. It is clearly visible that the data for all 

analyzers practically coincide, within their accuracy. The coincidence of the data also proves the 

correctness of the calibrations performed. 
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Figure 6. Examples of comparison of G2132-i and LI-7700. 

4. Conclusions

The study allow us to make conclusions about the levels of methane concentrations in the surface air 

East Arctic seas. On the one hand, despite the very high peak of CH4 concentrations near with the 

bubbles yield, enhancements of average methane concentration above the water surface in the seeps 

location is not significant. Average daily CH4 concentration for 12th October exceeds average level of 

CH4 beyond the seeps location (October, 10 and 14) only by a few percents. It is comparable with the 

regional variations of CH4 content (for example, on October, 9 near the Kolyma Bay of the East 

Siberian Sea). 

On the other hand, the a significant amount of methane yields from the sea bed in the Arctic seas 

observed during several expeditions [2, 4, 13, 14] is a reason to assume that that may have played a 

significant role in the enhanced atmospheric CH4 level in the Arctic region where mean CH4 

concentration exceeds mean global level on 0.1 ppm. 

The values of δ
13

CСН4 range from -57 ‰ to -44 ‰, that indicates the multiplicity of methane

sources in the Arctic. The maximum of δ
13

CСН4 is from -46 ‰ to -44 ‰ presumably corresponding to

thermogenic methane. It occurs during the passing of the Kuril - Kamchatka Trench (see Fig.4 a). 

The main results of the study are as follows. 

1. Both methane analyzers G2132-i and LI-7700 used in the ship campaign are effective

instruments for recording variations in the concentration of methane. Analyzers have extremely low 

short-period drift and high long-period stability of the calibration coefficients within the limits of their 

own accuracy. Used analyzers, both contact and with an open optical path, provide a reliable record of 

both short-term peaks of methane concentration generated by the methane release to the surface from 

the bottom hydrates and the mean CH4 values of the surface air concentration. We obtained a good 

agreement between the data sets of two types analyzers. 

2. It is necessary to use specific protection for open path analyzers during the observation

from the ship to minimize data losses, especially for Arctic condition when the icing of mirror is 

frequent. 

3. The measurements indicate possibility of formation of high methane peaks in atmospheric

surface air over the East Siberian Arctic Shelf above the locations of methane release from the seabed. 
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