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Abstract. Several methods of isolating available mesoscale circulations from high-resolution 

data are presented. We discuss temporal and spatial filtration as the classical approach, a 

combined time-space method (based on two independent numerical simulations with different 

resolution), and a dynamic method (based on the geostrophic approach as a separation criterion 

between synoptic and mesoscale processes). The results demonstrate that the dynamic distinction 

method is the most promising one. Decomposition of the velocity field into geostrophic and 

ageostrophic components is performed. The research was conducted using the long-term high-

resolution North Atlantic Atmospheric Downscaling (NAAD) experiment based on the Weather 

Research and Forecast model (WRF). 

1.  Introduction 

The majority of climate studies are carried out using atmospheric reanalysis data. Modern global 

atmospheric reanalyses are based on hydrostatic numerical models with spatial resolution of about 0.3°–

2.5° (for example ERA-Interim [1]), which assimilate a specific set of observational data. This resolution 

allows to reliably resolve synoptic processes but does not enable taking most mesoscale processes into 

account. Meanwhile, mesoscale dynamics is often associated with extreme weather events, and also 

many mesoscale case-studies indicate growth in the amplitude of thermodynamic quantities with 

increasing resolution [2]. Nonetheless, it is commonly believed that the influence of the mesoscale is 

always smoothed to insignificant values on climate scales. Quantifying the contribution of mesoscale 

circulation to the climate requires high-resolution atmospheric data over a period comparable to that of 

climatic processes and a method that allows separating the scales of atmospheric processes. 

In order to predict local, i.e. mesoscale climate effects reanalysis data can be dynamically downscaled 

using a regional climate model (RCM). These models have better-resolved regional characteristics, such 

as local topography, land use, and land cover conditions; RCMs are capable to reproduce regional to 

local climate with realistic spatial distribution and temporal variations [3]. RCMs are widely used to 

conduct regional climate research, but explicit decomposition of meteorological fields into scales has 

never been carried out. 
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According to observations, atmospheric processes are covering a wide range of spatial and temporal 

scales. Several classifications have been developed, the most popular were proposed by Orlanski [4] 

who defined the mesoscale as ranging from 2 to 2000 km and from 1 hour to 1 week. Mesoscale 

processes are usually investigated using a case-study approach. In this paper, we compare several 

methods for isolation of all available mesoscale from long-term high-resolution data. The high-

resolution dataset has been obtained through regional climate simulation over the North Atlantic for 

31 years from 1979 to 2009 with a 14 km spatial step (NAAD, North Atlantic Atmospheric 

Downscaling). 

2.  NAAD model design 

The Weather Research and Forecast model (WRF V3.8.1) [5], a fully compressible, non-hydrostatic 

model that uses a terrain-following hydrostatic-pressure vertical coordinate, is relied upon in this study. 

The physical options used in the model consist of the Kain-Fritsch (KF) convective parameterization 

scheme [6]; the WRF Single-Moment 6-class (WSM6) scheme for microphysics [7], which additionally 

employs entrainment information from KF; the RRTMG longwave and shortwave radiation schemes [8]  

are used for terrestrial and solar radiation processes, that moreover utilize effective cloud water, ice and 

snow radii from WSM6 and subgrid convective cloud information from KF for more accurate estimation 

of atmospheric optical depth; as a surface layer parametrization we used the MM5 scheme [5] which is 

based on the Monin–Obukhov similarity theory, accounts viscous sub-layer and uses COARE3 

formulation [9] for calculating thermal and moisture roughness lengths (or exchange coefficients for 

heat and moisture) over ocean surface; the Yonsei University planetary boundary layer (PBL) non-local 

scheme [10]; and the NOAH land surface model [11]. The PBL scheme is responsible for vertical 

subgrid-scale fluxes due to eddy transports in the whole atmospheric column, not just in the boundary 

layer. Horizontal eddy viscosity coefficients are obtained in the WRF dynamic core independently using 

the Smagorinsky first-order closure approach. 

Additionally, a few modifications were made for a long-term run of the WRF experiment. The 

RRTMG scheme uses climatological ozone and aerosol. The ozone data is adapted from the CAM 

(Community  Atmospheric Model) radiation scheme with latitudinal (2.82 degrees), height and temporal 

(monthly) variation. The aerosol data is based on Tegen et al. [12] with spatial (5 degrees in longitude 

and 4 degrees in latitudes) and temporal (monthly) variations. The Noah scheme updates deep soil 

temperature. Skin sea surface temperature is calculated using Zeng and Beljaars [13] formulation. 

The model domain is centered at (45°N, 45°E), with 551 points in the east-west and north–south 

directions with a resolution of 14 km, 51 vertical levels (starting from around 10-12m above the ocean’s 

surface). Initial and boundary conditions for the large-scale atmospheric fields including the sea surface 

temperature (SST) are taken from ERA-Interim reanalysis at 0.7° × 0.7° resolution [1]. The SST was 

updated every 6 hours during the simulation period. 

A 38-year run from 1 Jan 1979 to 1 Jan 2017 with 3-hourly output frequency is planned, but here we 

present the result for 31 years from 1979 to 2009. To minimizes large-scale error the traditional spectral 

nudging technique [14] was used. Nudging was applied towards horizontal wind components, potential 

temperature, and geopotential with coefficients equal to 3x10-4 s-1 at a wavelength longer than 1100 km. 

Spectral nudging is only applied above the PBL to maximize the WRF’s freedom to develop mesoscale 

circulation in the PBL. 

Validation, which is not demonstrated here, was carried out using ERA-Interim and NCEP-CFSR 

reanalyses, NDBC (National Data Buoy Center) data for near-surface temperature, water vapor and 

wind, ASCAT/METOP-A (12.5 km) and QuikSCAT (25 km) satellite data for comparison of surface 

wind. 

3.  Methods of mesoscale isolation  

Below we describe several methods for isolating mesoscale circulation. Three of them are based on the 

classical spectral criterion (temporal, spatial and combined filtering), and one dynamic method. The 

advantages and disadvantages of these methods are discussed in the Results section.  
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As the basic comparison criteria in this paper we used spectra for kinetic energy (KE) obtained from 

the horizontal wind components in the low troposphere. All spectra herein are computed by averaging 

spectra over a 10-day period at 3-hour intervals from 0000 UTC 15 January to 0000 UTC 25 January 

1979. Since WRF uses a hybrid terrain-following hydrostatic-pressure vertical coordinate, tropospheric 

spectra are produced by interpolating values to constant height surfaces (above mean sea level) between 

1 and 3 km at 1-km intervals, computing spectra on these surfaces, and then vertically averaging the 

resulting spectra. 

3.1.  Temporal filtration 

Temporal filtration based on the Lanczos filter [15] is often used to filter out synoptic scale motions. Its 

main advantage is effective suppression of the Gibbs phenomenon. Here we used a period of 9–24 hours 

as mesoscale boundaries (band-pass), which corresponds to a scale meso- by Orlanski. The range is 

limited by discreteness of NAAD data (3 hour) on one side and to avoid including the influences of fast 

cyclones on the other side. 

3.2.  Spatial filtering  

An intuitive method of spatial filtering is an operation of discrete convolution with a symmetric kernel. 

Here we used a Gaussian kernel: 

𝑉𝑓(𝑥, 𝑦) = ∑∑𝐶𝑉𝑉(𝑥𝑖, 𝑦𝑗)𝑒
−𝜗𝑟2(𝑥,𝑦,𝑥𝑖,𝑦𝑗)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1

, (1) 

𝑥(𝑁𝑥+1)/2 = 𝑥; 𝑦(𝑁𝑥+1)/2 = 𝑦, (2) 

𝑟2(𝑥, 𝑦, 𝑥𝑖 , 𝑦𝑗) = (𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2, (3) 

where 𝑉𝑓(𝑥, 𝑦) – filtered horizontal wind components in (𝑥, 𝑦) space, 𝑁𝑥 and 𝑁𝑦 – dimensions of the 

convolution kernel over 𝑥 and 𝑦 axes; 𝑉 – source field. Constants 𝜗 and 𝐶𝑉 were defined as: 

(𝑥𝑁𝑥
− 𝑥) = 3 ∗ (

1

2𝜗
)
1/2

 , (4) 

∑∑𝐶𝑉𝑒−𝜗𝑟2(𝑥,𝑦,𝑥𝑖,𝑦𝑗)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1

= 1. (5) 

In this study, the kernel size was 57х57, which corresponds to the size of 800х800 km. This size was 

chosen in order to prevent large mesoscale processes such as cyclonic fronts and tropical depressions 

from being filtered out. 

3.3.  Combined space-time filtering  

The above methods perform filtering separately in time or space. Since phenomenologically mesoscale 

processes are described simultaneously, a more promising approach is to account for time and space 

simultaneously. For this purpose, together with the high-resolution NAAD experiment (HiRes) an 

independent low-resolution experiment (80 km, LoRes) with identical parameterization schemes was 

conducted. The LoRes result was then linearly interpolated to a high-resolution grid and subtracted from 

the first one (HiRes–LoRes). This approach has both time and space filtering properties. 

3.4.  Dynamic method 

Classifications of atmospheric motion are based on observational data and, therefore, do not reveal the 

physics of the processes. More promising from the physical point of view is the dynamic method where 

the applicability of geostrophic approximation can be used as a separation criterion between synoptic 

and mesoscale processes. Synoptic scale motions, by definition, are driving the balance between the 

pressure gradient force and the Coriolis force [16]. The system of equations for the horizontal 

components of geostrophic balance (or geostrophic wind) in perturbation form is defined as (based on 

[17]): 
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𝛼

𝛼𝑑
[𝜇𝑑 (

𝜕𝜑′

𝜕𝑦
+ 𝛼𝑑

𝜕𝑝′

𝜕𝑦
+ 𝛼𝑑

′
𝜕𝑝̅

𝜕𝑦
) +

𝜕𝜑

𝜕𝑦
(
𝜕𝑝′

𝜕𝜂
− 𝜇𝑑

′ )] = −𝜇𝑑𝑓𝑢𝑔. (7) 

Where 𝑢𝑔 and 𝑣𝑔 – components of geostrophic wind, 𝑝 and 𝜑 – full (base + fluctuation) pressure and 

geopotential, 𝛼 – inverse density (1 𝜌⁄ ), 𝜇 – column mass of air, bar stands for base (hydrostatic) state, 

primes are for fluctuations, 𝜂 – vertical coordinate, 𝑓 – the Coriolis parameter.  The subscript 𝑑 denotes 

dry atmosphere characteristics. To avoid interpolation errors all computations were performed at the 

WRF vertical levels using WRF discretization schemes. 

By definition the relation between synoptic wind and full wind is: 

𝑉⃗ = 𝑉𝑔⃗⃗  ⃗ + 𝑉𝑎⃗⃗  ⃗, (8) 

where 𝑉⃗  is the total wind vector, subscripts 𝑔 and 𝑎 denote geostrophic (synoptic) and ageostrophic 

portions. Since total wind is the product of the WRF mesoscale model based on full non-hydrostatic 

compressible governing equations, the remaining (ageostrophic) part is the mesoscale portion. 

4.  Results  

The low tropospheric (1–3 km) horizontal KE spectra for mesoscale motion obtained using different 

methods are shown in Figure 1. The temporal filtration method (Figure 1a) reveals significant 

underestimation of KE, indicating an issue with the filtration upper limit. According to reanalyzes, 

among all cyclones of the Northern Atlantic 20% are fast traveling [18], hence the 24-hour upper limit 

was chosen to avoid taking them into consideration. This led to exclusion of several large (meso-) 

mesoscale structures and reduction of KE spectra. Another disadvantage here is related to the periods of 

atmospheric tides (0.5 and 1 day). These variations do not have mesoscale origin but fall within the 

range of interest. 

Both the spatial and the combined methods look similar (Figure 1a and 1b). They tend to preserve 

total KE starting from a wavelength of 200 km, indicating the upper limit for reliable accounting of the 

mesoscale. This is also related to the spatial filtration limit. To expand the range of mesoscale processes 

(up to meso-α structures) it is necessary to increase the size of the convolution kernel (spatial filter) or 

the resolution of the LoRes experiment (combined filter), which might lead to undesirable accounting 

of synoptic structures. 

The dynamic isolation method shows different results (Figure 1d). The geostrophic KE spectra (green 

curve) demonstrates general characteristics of a canonical spectrum. A shallow power law slope at the 

largest wavelengths (above a few thousand kilometers, i.e. the global scale), a steeper slope region (–3) 

at wavelengths between a few thousand kilometers and several hundred kilometers (the synoptic scale), 

followed by a transition to a shallower sloped region for wavelengths of less than several hundred 

kilometers (mesoscale and finer scales). Starting from 800 km both geostrophic and ageostrophic KE 

spectra have similar behavior and a well-known power law slope steepness around –5/3 indicating 

mesoscale characteristics [19]. High dispersion of geostrophic velocity in the mesoscale region indicates 

the presence of significant mesoscale heterogeneity of the pressure gradient. Since total wind at these 

scales is not geostrophic, heterogeneity in the total wind field does not appear (low level of the blue 

curve). According to the equation (8), variability of geostrophic velocity at the mesoscale causes 

variability of the ageostrophic component, which explains the coincidence of green and red curves. The 

point of coincidence, apparently, indicates the upper mesoscale limit for this particular period because 

here dispersion of geostrophic and ageostrophic velocities are greatly exceeding dispersion of real (total) 

velocity, so the geostrophic balance is strongly violated. 
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Figure 1. Total (blue) and mesoscale (red) kinetic energy spectra in the low troposphere (1–3 km) 

from different mesoscale isolation methods: (a) temporal band-pass using Lanczos filter (9–24 hour); 

(b) spatial filter – convolution with a Gaussian kernel (size 800х800 km); (c) combined space-time 

filtering; (d) dynamic method. 

Figure 2 depicts the mean variance of mesoscale wind speed for Januaries from 1979 to 2009 

(31 years). Above the ocean’s surface all methods show qualitative similarity: the area of high energy 

stretches along the North Atlantic storm-track [18]. In general, all methods differ in magnitude and the 

level of detail representing the tropical region. Canonically the tropical region is expected to have a 

significant amount of mesoscale variance. 

Temporal band-pass filtering (Figure 2a) has the lowest mean variance, caused by underestimation 

of meso- systems, which is explained earlier. Both the spatial and the combined approaches (Figure 

2b and 2c) highlighted orographically generated mesoscale circulation in the Greenland and Iceland 

region.  

The dynamic approach depicted in Figure 2d produces a more detailed representation and 

significantly more energy in the domain. High variance values above land surface are related to areas 

with complex orography and are the result of calculating the geostrophic velocity: high pressure 

gradients appearing in mountain areas lead to high geostrophic velocities. This is especially important 

in the southern latitudes where the Coriolis parameter (f) is small. 
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Figure 2. Mean variance of mesoscale wind speed (m2/s2) at 1 km for Januaries from 1979–2009 

obtained using: (a) temporal band-pass using Lanczos filter (9—24 hour); (b) spatial filter – 

convolution with a Gaussian kernel (size 800х800 km); (c) combined space-time filtering; (d) 

dynamic method. 

Since total wind is the sum of geostrophic and ageostrophic components, the variance (Var) has to 

follow the equation: 

Var(𝑉) = Var(𝑉𝑔) + Var(𝑉𝑎) + 2 ∙ Cov(𝑉𝑔, 𝑉𝑎).  (9) 

The equation (9) shows that the sum of geostrophic and ageostrophic KE doesn’t necessarily mean the 

total KE due to the covariance term (measure of joint variability). The mean dimensional value of 

doubled covariance is shown in Figure 3 and it twice smaller (–50%) than variance of 𝑉𝑎. Covariance is 

negative due to the fact that the geostrophic velocity often exceeds the total velocity. 
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Figure 3.  Mean doubled covariance (m2/s2) of 

geostrophic and ageostrophic velocity for 

Januaries 1979–2009 at 1 km, obtained using 

the dynamic method. 

A relatively high linear dependence between the geostrophic and ageostrophic velocity components 

is caused by high mesoscale variance of the pressure gradient and low dispersion of the total velocity. 

This makes it difficult to estimate the contribution of mesoscale velocity to the total velocity. 

Nevertheless, it is possible to compare mesoscale to synoptic velocity using: 
Var(𝑉𝑎)

Var(𝑉𝑔)
∙ 100%. (10) 

The climatological mean in winter (January) at different vertical levels of this ratio is depicted in Figure 

4. It is clearly seen that in the lower troposphere (left and center) up to 70% is confined to the area of 

cyclonic activity (over the Gulf Stream), which is likely related to mesoscale processes in their fronts. 

In the dynamic method, we defined mesoscale processes as the ones which disobey the geostrophic 

balance. Meanwhile, the geostrophic balance itself does not apply near the equator due to the smallness 

of the Coriolis parameter. Hence in tropics the contribution of mesoscale processes obtained with this 

method has to be treated carefully and is not considered in this paper. 

 
Figure 4.  Mean share of ageostrophic wind variance in geostrophic variance (%) for Januaries 1979–

2009 at heights: 100m (left), 1 km (center) and 5 km (right). 
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5.  Summary  

As follows from the above analysis, spectral-based methods demonstrate low reliability in the general 

problem of isolating available mesoscale dynamics from high-resolution data. Their major disadvantage 

stems from the need to pre-define the limits of mesoscale processes. Such an approach is suitable for 

case study experiments but not for general isolation. Temporal filtration does not allow to get rid of the 

atmospheric tide effect and fast-moving cyclones. The success of spatial filtering essentially depends on 

the choice of the shape and size of the convolution kernel, both could vary depending on the region and 

season. These methods could potentially be improved, but this will significantly complicate the analysis 

and still will not involve a physical approach. The combined space-time method allows suppressing the 

atmospheric tide and influences of fast cyclones but keeps the main disadvantage of the spatial method: 

the LoRes (80 km) experiment will likely contain large mesoscale structures in its data, hence the 

subtraction procedure will exclude them from consideration. 

The most promising from a physical point of view is the dynamic method, based on the geostrophic 

approach as a separation criterion between synoptic and mesoscale processes. Preliminary estimates 

have shown canonical behavior of ageostrophic (mesoscale) dynamics and also made it possible to 

establish some new statistical estimates of the mesoscale at a climatic scale. However, this method 

should be used with caution: (1) in tropics, due to the smallness of the Coriolis parameter; (2) in the 

lower atmosphere (the Ekman layer), where surface friction plays an important role and formally 

increases the ageostrophic velocity component. In addition, high mesoscale variance of the pressure 

gradient and lower dispersion of the total velocity cause a relatively high linear dependence of the 

geostrophic and ageostrophic velocity components, which prevents from obtaining their contributions 

to total kinetic energy. 

In the future it is planned to estimate the transfer of momentum, sensible and latent heat due to 

mesoscale processes in comparison with the synoptic on a climatic timescale. Additionally, we are 

working on isolating individual mesoscale circulations using criteria developed for determining coherent 

structures in a turbulent flow.  
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