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Abstract. Ambient PM2.5 concentrations affect human health and natural environment. 
Government-built PM2.5 monitoring supersites are accurate but cannot provide a dense 
coverage of the air quality index (AQI) monitoring. Broadly-distributed PM2.5 microsite 
sensors can complement supersites for fine-grained monitoring. However, due to the low cost 
of microsite sensors, the accuracy of the raw AQI measurements is not high enough for 
monitoring purpose. Calibration of low-cost sensors is thus a necessary processing step to 
enhance measurement fidelity. This paper presents a particle swarm optimization (PSO) based 
active learning of optimal configurations of XGBoost and spatiotemporal data for PM2.5 
microsite sensor calibration. The experimental results show that PSO active learning of the 
optimal configurations of XGBoost and spatiotemporal data can calibrate low-cost PM2.5 
microsite sensors to achieve high accuracy by reference to governmental supersites. 

1.  Introduction 
The industrialization and human activities have drastically increased the concentrations of particulate 
matter with aerodynamic diameter  2.5 m (PM2.5) in our environment. Many researchers have 
empirically shown the strong correlation of ambient PM2.5 concentrations with human health [1], 
climate change [2], atmospheric visibility[3], plant species mortality [4], to name a few. PM2.5 is a 
collection of complex compounds and it has multiple sources. The transportation and dispersion path 
of PM2.5 is hard to analyze and predict due to many anthropogenic activities and uncertain scenarios of 
meteorological conditions such as wind speed and direction, precipitation, temperature, relative 
humidity, atmospheric pressure, and solar radiation. PM2.5 is contributed by natural sources (soils, 
crustal elements, volcanic eruptions, biomass, etc.) anthropogenic sources (such as vehicle exhaust, 
coal and gasoline combustion, petrochemical production, and steel refinery), and photochemical 
transformation of precursor emissions such as SO2 and NOx. To realize the complex apportionment of 
PM2.5 concentration, expensive and sparsely-distributed supersite sensors were built by government to 
monitor possible contaminations at few regions of interest.  

To reach a broader coverage of monitoring area, participatory citizens and researchers have built 
low-cost microsite PM2.5 sensors which provide denser but less accurate data than those measured by 
supersites. A feasible solution to enhance the fidelity of low-cost sensors is to find the relationship 
function between the measurements of microsite sensors and supersite sensors. The relationship 
function can be found by multiple linear regression, higher-order regression, support vector regression, 
gradient regression tree boosting, adaptive neuro-fuzzy inference system (ANFIS), to name a few [5]. 
Moreover, researches have shown that the geographical landscapes, local land usage and 
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meteorological patterns have various degrees of influence on PM2.5 concentration [6]. We believe that 
by considering multi-scale data in both spatial and temporal dimensions can improve the accuracy of 
sensor calibration. This paper proposes a calibration method of low-cost microsite PM2.5 sensors by 
using particle swarm optimization (PSO) [7] for active learning of eXtreme Gradient Boosting 
(XGBoost) [8] and spatiotemporal data. Our method actively chooses the optimal configurations of 
XGBoost parameter settings with the best composition of spatial and temporal PM2.5 data. The 
comparative results with supersite sensors show the improving accuracy of the low-cost microsite 
sensors by using the proposed calibration method. 

2.  Methodology 
XGBoost [8] is a novel gradient tree boosting algorithm which has won several competitions including 
Kaggle’s challenges and KDDCup 2015. By using a sparsity-aware split-finding algorithm and 
weighted quantile sketch, XGBoost is able to scale up to handle billions of data examples but only 
consume fewer computational resources than existing machine learning methods. Due to the 
prestigious performance and data scalability, we apply XGBoost to learn an ensemble of regression 
trees which best interpret the relationship function between the measurements of microsite sensors and 
supersite sensors. To reach the best performance with XGBoost, there are a number of algorithmic 
parameters involved to be optimally tuned. The search range of eligible parameter values and their 
connotations are listed in Table 1. 

 
Table 1. Value ranges and connotations of XGBoost parameters. 

Parameters Ranges Connotations 
g1 [1, 4] Tree maximal level
g2 [1, 300] Number of boosting trees
g3 [0, 12] Minimum weighted sum of leaf nodes 
g4 [0.001, 0.9] Learning rate
g5 [0, 1.0] Proportion of training data
g6 [0, 2.0] Threshold for split finding
g7 [0, 2.0] L1 regularization term
g8 [0, 2.0] L2 regularization term

 
To learn the best configuration of XGBoost parameter values with the optimal combination of 

spatial and temporal data, we apply the particle swarm optimization (PSO) algorithm [7] to 
accomplish this learning task. PSO is an outstanding evolutionary algorithm which is capable of 
learning the optimal value of decision variables to an explicit or implicit objective function. PSO has 
been applied to a wide range of complex domains such as energy demand prediction [9], wind turbine 
placement [10], educational informatics [11], etc. PSO is a bio-inspired algorithm which mimics the 
social dynamics of bird flocking or fish schooling. A swarm of birds flock synchronously, change 
direction suddenly, scatter and regroup iteratively, and finally perch on a position. This form of social 
intelligence not only increases the success rate for food foraging but also expedites the process. The 
advantages of PSO include natural metaphor, stochastic move, adaptivity, and positive feedback. The 
PSO algorithm realizes simple rules and serves as an optimizer for elusive problems. 

Now we formally present our learning task as follows. As previously noted, the metric scale of 
spatial and temporal data should be explored to find the most appropriate composition of training 
dataset. In this paper, we consider three microsite sensors which are within 200 m to their nearest 
supersite (see Table 2) for calibration. The choice of spatial training data for each sensor is thus 
classified into four various-scale categories: using its own measurements (C = 1), using measurements 
of its own and another sensor (C = 2 or 3), and using measurements of all three sensors (C = 4). The 
available temporal training data is 60-day historical hourly PM2.5 measurements. Considering the 
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characteristic of time series, we use temporal data in a multi-scale time window in t immediately 
preceding days for calibration. The search range of t is between 1 and 30. 

 
Table 2. Distance between low-cost and supersite sensors. 

Low-cost sensors Nearest supersite sensors Distance (m) 
A1 B1 122
A2 B2 85
A3 B3 112

 
In consideration of both XGBoost configuration and the combination of spatiotemporal data, we 

apply PSO to actively learn the decision task. Figure 1 shows the concept of our active learning 
approach where the PSO algorithm explores the complex space consisting of possible combinations of 
models and data. Each model is represented by an instance of XGBoost parameterization of nine 
variables and each piece of data is a selection of data source from spatial, temporal, or spatiotemporal 
data composition. Hence, the decision problem results in a mixed integer programming formulation 
which involves 10 decision continuous or combinatorial variables for indicating a combination 
instance of XGBoost model (g1, g2, …, g8), chosen category for measurement (C), and number of 
learning days (t). The representation of the PSO particle is shown in Figure 2.  

 

Figure 1. Concept diagram of the proposed approach. 
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g1 g2 g3 g4 g5 g6 g7 g8 C t 
 

Figure 2. Representation of the PSO particle.
 
A swarm of particles are employed to explore the enormous model-data space. The rationale of 

PSO learning is relying on guidance of personal best (pbest) and global best (gbest) memory identified 
in the evolution so far by every particle. In particular, particle i has a personal memory storing the best 
position among those it has visited, referred to as pbesti, and the best position gbest visited by the 
entire swarm. The PSO iterates an evolution until a stopping criterion is satisfied, which is usually set 
as a maximum number of iterations. At each iteration, particle i adjusts its velocity vi and position pi 
by referring to the personal best and the swarm’s best position as follows. 

  )()( 2211 iiiii pgbestrcppbestrcvKv   (1) 

 iii vpp   (2) 

where pi is the position of the i-th particle, K is the constriction factor, c1 and c2 are the accelerating 
coefficients, and r1 and r2 are random numbers drawn from (0, 1). The fitness (a score of survival) of a 
particle is defined by evaluating the performance of the model-data combination encoded in the 
particle with the measure from the referred supersite. We employ three commonly used performance 
indicators for evaluating the regression models. The three indicators are R-Squared (coefficient of 
determination), RMSE (root mean squared error), and NME (normalized mean error). 

3.  Results and discussion 
We have deployed several PM2.5 microsite sensors around the government-built supersites located in 
central Taiwan area. The period of collected PM2.5 concentration data is between September 24 and 
November 22 in 2017, in total of 60 days. The data falling in the first 30 days are used for the 
selection of the used number of days of training data (i.e. t = 1 to 30), while the data of the rest 30 days 
are used for testing.  

We compare the original measures of PM2.5 microsite sensors with the calibrated result from four 
different sources for PSO active learning. Our first calibration method is named PSO-learned 
XGBoost which deploys PSO to learn the optimal XGBoost parameter values (all gi). The used spatial 
and temporal data are fixed to the corresponding microsite (C = 1) and in all 30 training days (t = 30). 
So there is no active learning with the spatiotemporal data. The second calibration method is named 
PSO-learned XGBoost and spatial data. The PSO particle includes all gi and C variable, but fixing t = 
30. So this method actively learns the best composition of spatial data from the three microsites. The 
third calibration method is named PSO-learned XGBoost and temporal data. In this method, the best 
value of all XGBoost parameters gi and the time window length variable t are delved. However, the 
spatial variable is not explored. Finally, the fourth calibration method is named PSO-learned XGBoost 
and spatiotemporal data uses all gi, C, and t variables and actively learns the optimal configuration of 
XGBoost and the best composition of spatiotemporal data.  

Table 3 shows the measurement accuracy of the low-cost PM2.5 microsite sensors without or with 
various calibration method. It is seen that the accuracy obtained with all calibration methods is higher 
than that obtained without calibration, indicating the necessity of calibration process for low-cost 
microsite sensors. The best performing accuracy for each microsite under various performance metrics 
are shown in boldface. It is seen that the PSO-learned XGBoost and spatiotemporal data defeats the 
other three calibration methods by obtaining eight best results out of nine testing cases. So we claim 
that the best calibrator of all tested methods is the PSO-learned XGBoost and spatiotemporal data. The 
implication of the finding is significant in the sense that the exploration of complex model-data space 
is critical to calibration performance, and active learning is a viable approach to this learning task. 
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Table 3. Calibration residual of microsite sensors. 

Calibration methods R2 RMSE NME 
Without performing calibration:

A1 0.7295 12.95 0.5768 
A2 0.6555 15.81 0.8877 
A3 0.8221 10.83 0.3918 

PSO-learned XGBoost: 
A1 0.7661 7.38 0.3060 
A2 0.6492 7.13 0.3574 
A3 0.7997 5.77 0.1743 

PSO-learned XGBoost and Spatial Data:
A1 0.7649 6.99 0.3093 
A2 0.6608 8.05 0.3617 
A3 0.8058 5.67 0.1749 

PSO-learned XGBoost and Temporal Data:
A1 0.7455 6.62 0.2645 
A2 0.6672 6.48 0.3355 
A3 0.8267 5.44 0.1714 

PSO-learned XGBoost and Spatiotemporal Data:
A1 0.7625 6.25 0.2627 
A2 0.6719 6.39 0.3330 
A3 0.8296 5.12 0.1573 

4.  Conclusions 
In summary, we have proposed a novel calibration approach by using PSO active learning of XGBoost 
and spatiotemporal data for low-cost PM2.5 microsite sensors. By referring to the expensive 
government supersites, low-cost microsites can be calibrated to provide accurate measures and dense 
geographic coverage, providing a better surveillance of AQI network. The experimental results show 
that our method actively learns the optimal configurations of XGBoost model and the best 
composition of spatial and temporal data to fit the characteristics of PM2.5 measurement.  
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