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Abstract. Land use regression method (LUR) has been recognized as a promising way to 
predict surface air pollutants concentration and spatial distribution of them globally. While 
linited studies have been conducted in China, especially in rather large areas. We therefore 
promoted an optimized LUR method which refined the predictor variables and improved the 
regression modeling method for PM2.5 spatial distribution in Jiangsu, China. Firstly, the 
integrated predictor variables which combined the total emission, distance to the monitoring 
station and wind direction are used to explore a more appropriate expression of variables e.g. 
pollution from point sources and line sources (traffic). The results showed that a model 
generated by integrated variables (R2=0.52) outperformed that generated by traditional 
variables (R2=0.34). Secondly, we compared the method of geographically weighted regression 
(GWR) which reflect the influence of geographical location on the effect of regression process 
with traditional multivariate linear regression (MLR) method. The model comparison results 
suggested that the overall prediction accuracy is significantly improved by 19% when using 
GWR model (R2=0.62). Furthermore, the spatial distribution map of predicted PM2.5 
concentrations from GWR model was definitely finer than that from MLR model. It can be 
concluded that more appropriate expression of variables and the GWR modeling could 
definitely improve LUR modeling prediction accuracy. This study would not only demonstrate 
the applicability of the optimized LUR models in large geographical areas, but also support for 
fine population exposure studies in the future. 

1.  Introduction 
In 2013, many parts of China experienced an unprecedented smog crisis. Fine particulate matter, or 
PM2.5, had become a focal word in China. PM2.5 refers to particles whose aerodynamics equivalent 
diameter is less than 2.5 μm in ambient air. PM2.5 is easy to adsorb toxic substances and has long 
residence time and long transport distance in the atmosphere, which has a great impact on human 
health and atmospheric environment[1;2]. This phenomenon has aroused the government's and the 
whole society's concern about air pollution. To deal with and solve this environmental problem arising 
mainly from PM2.5, China’s State Council issued the Action Plan for Air Pollution Prevention and 
Control in September 2013, which pointed out the air quality goals for the next five years and some 
specific targets.  

Numerous environmental epidemiology studies have shown that exposure to PM2.5 pollution is kind 
of associated with cardiovascular and respiratory diseases and consequently increased mortality [1;3]. 
In addition, epidemiological studies launched in China estimated high health effects incurred by PM2.5 
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pollution[4;2]. Although some epidemiological studies concerning air pollution e.g. PM2.5 have been 
kindly successfully carried out in China during these years, for finer human health effects data, more 
accurate exposure concentration estimates are especially needed.  

Many models were used to simulate the spatial distribution of pollutant concentration, such as 
spatial interpolation, atmospheric diffusion simulation, remote sensing inversion and land use 
regression (LUR) models[5]. LUR modeling is a multivariate regression modeling method based on 
air quality monitoring station observation concentration and its surrounding geographical predictor 
variables that commonly include land use, population, traffic, meteorological and local pollution 
data[5]. LUR models were widely used all over the world. The earliest prediction area is Europe, and 
later it was extended to North America, Asia, etc. The predicted pollutants include NO2, NOX, 
particulates(PM10, PM2.5 and UFP), BC and some organic matters[6-10]. With the improvement of 
research methods, the deepening of research theory, the improvement of data availability and precision, 
and the development of GIS software, LUR models have become one of the most commonly used 
methods to assess air pollutants exposures in epidemiologic studies. [6;11].  

After 20 years of development, the LUR models still had two main limitations. One was the 
deficiency of irregular selection of characteristic variables and uncertain expression of variables, 
which lead to insufficient explanatory power of the model[5]. Concerning the very reality of China, 
the PM2.5 pollution from Point sources deserved more attention than the other areas in the world. Some 
previous studies have tried putting point sources predict variables into LUR models, but the precise 
expression of this variable have not been identified[12;13]. Learning from a former study carried out 
by Chen in Tianjin, integrated independent variables were used in this study to explore a more 
appropriate expression of variables e.g. pollution from point sources and line sources (traffic)[14]. The 
other was that the traditional method of multivariate linear regression (MLR) could not reflect the 
influence of geographical location on the effect of regression. The technique of GWR is a variant of 
MLR with a weight function included, which only takes the samples within a defined neighbourhood 
(band width or number of samples) into calculation and also may weigh the contributions of closer 
samples more than those farther away [15]. GWR has obvious advantages over MLR in spatial data 
analysis and spatial mapping because it takes into account the spatial nonstationarity of the 
relationship between variables[16;17]. It is necessary to probe into the method of geographically 
weighted regression (GWR) for the optimization effect of the model.  

Jiangsu Province is a developed and polluted area , and few researchers have studied the spatial 
distribution of PM2.5 exposure in this area. We therefore promoted an optimized LUR method which 
refined the predictor variables and improved the regression modeling method for PM2.5 spatial 
distribution in Jiangsu. This study made up the gap in the study of PM2.5 spatial distribution in Jiangsu 
Province, and laid a foundation for further study on population exposure. 

2.  Materials and methods 
Annual average PM2.5 concentrations from routine air quality monitoring stations and the selected 
predictor variables were combined to develop LUR models in Jiangsu Province.  

2.1.  PM2.5 concentration data 
There are 97 routine air quality monitoring stations being distributed among Jiangsu Province, the 
types of them include urban accessing stations, regional accessing stations, background stations, 
source impact stations and traffic stations. Two of these 97 stations were deleted in this study owing to 
lack of partial monitoring data during the study time. Finally the daily PM2.5 concentration 
measurement of 95 stations (Figure 1) from 1 January 2015 to 31 December 2015 were selected as the 
study data. Each station had more than 27 daily mean concentration in a month and more than 324 
daily mean concentration in a year, which conformed to the rule of data validity. For each station, all 
daily mean concentration measurements were averaged to calculate the annual average.  

 



EEEP2018

IOP Conf. Series: Earth and Environmental Science 227 (2019) 052045

IOP Publishing

doi:10.1088/1755-1315/227/5/052045

3

 
 
 
 
 
 

2.2.  Predictor data for LUR models 
Considering the selection experience of variables in previous studies and the reality of this study, there 
were five types of predictor variables included in the process of modeling[5]. Table 1 shows the 
selected predictor variables, and the priori hypotheses made for LUR model developing, including the 
unit, buffer sizes, transformations and the priori defined direction of effects of the variables[18]. 

Figure 1. Air quality monitoring stations in Jiangsu Province. 

2.2.1.  Land use data. The Remote Sensing Monitoring data of Land use in China in 2015 were 
available from the Resource and Environmental Science data Center of the Chinese Academy of 
Sciences as a 30m grid database. The land use types of the national are divided into 6 primary (Urban 
and rural, Industrial and mining, residential land; Water area; Grass; Forest land; Cultivated land; and 
Unutilized land) types. Based on the national database, part of Jiangsu Province was extracted from 
the whole country. The area of each type of land-use was calculated in buffers of 100, 300, 500, 1000, 
2000, 3000m. 

2.2.2.  Population density data. The population density data were available from the Ministry of Civil 
Affairs of the People's Republic of China. Administrative divisions are compiled according to the 
information of the national administrative divisions at or above the county level approved by the State 
Council, ending on December 31, 2015. The population of administrative districts at or above the 
county level in 2015 came from the National Bureau of Statistics of the people's Republic of China. 
Population density data (in 10,000people/km2) of each air quality monitoring station used population 
density data of the district or county where it set as a proxy. 

2.2.3.  Meteorological data. The meteorological data of 23 Meteorological observation stations 
distributed over the Jiangsu Province were available from National Meteorological Information Center. 
365 daily observation data of air pressure, wind speed, relative humidity and precipitation of each 
station were averaged to calculate the annual average. Meteorological data of observation station 
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nearest to air quality monitoring station were used as the proxy of meteorological data of this air 
quality monitoring station. 

2.2.4.  Point source pollution data. Point source pollution data were available from Jiangsu Province 
key Monitoring Enterprise Self-monitoring Information Publishing platform. Only the State key 
Supervision and Control Enterprise of exhaust Gas in Jiangsu Province in 2015 were considered as the 
waste gas pollution sources. After investigation and confirmation, 6 of total 194 State-controlled 
enterprises shut down in 2015, and 13 enterprises were lack of monitoring data, finally the annual 
emission of NO2, SO2 and soot of 175 enterprises were used as the proxy of PM2.5. Learning from a 
former study carried out by Chen in Tianjin, integrated independent variables are used in this study to 
explore a more appropriate expression of variables of emission from point sources and line sources 
(traffic)[14]. To synthetically account for the distance of the monitoring station and wind direction 
relative to the point source, the PSIndex was calculated (Figure 2) .The point source variables were 
calculated in buffers of 3, 5, 7, 10, 13 and 15km. 

 

Figure 2. Point sources within 15 km buffer and the wind speed and 
frequency rose at the Kunshan Experimental Primary School monitoring 

station in 2015. 

2.2.5.  Road traffic data. Road traffic data of Jiangsu Province in 2015 were available from National 
Geomatics Center of China. Only 5 main classe s of roads were considered as the study data, which 
were Express way, Trunk road, Main road, Minor road and Ordinary street. Similar to the idea of 
PSIndex calculation, the LSIndex was calculated[14]. The road traffic variables were calculated in 
buffers of 50, 100, 150, 200, 300, 400 and 500m. 

2.3.  Model development 

2.3.1.  Multiple linear regression modeling. Variables in the Distance to the nearest point source. 
Emission of point source and Integrated point source variable were considered as mutually 

exclusive point source variables and combined with other variables respectively to construct models 
for PM2.5, the same rule to three variables of Road Traffic[17]. According to the previous research 



EEEP2018

IOP Conf. Series: Earth and Environmental Science 227 (2019) 052045

IOP Publishing

doi:10.1088/1755-1315/227/5/052045

5

 
 
 
 
 
 

experience, there are two kinds of model building algorithms, one is backward algorithm, the other is 
forward algorithm[5;19]. The former modeling method is used here in this study. 
 

Table 1. Predictor variables uesd to build models. 

Variable 
classification 

Predictor 
variable 

Variable name  Unit 
Buffer size (radius 
of buffer) 

Transformation 
Direction 
of effect 

Land Use 

Industrial and 
mining land 

INDUSTRY 

m2 
100, 300, 500, 
1000, 2000, 3000m

NA 

+ 

Residential land RESIDENCE + 

Water area WATER - 

Grass land GRASS - 

Forest land FOREST - 

Cultivated land CULTIVATION NA 

Population 
Density 

Population 
density of 
administrative 
districts or 
county 

POP 
10,000 
people/m2

using population 
density data of the 
district or county 
where monitoring 
station set as a 
proxy 

NA + 

Meteorological 
Element 

Precipitation PRCP mm using 
meteorological data 
of observation 
station nearest to 
monitoring station 
as a proxy  

NA 

- 

Air pressure PRS hPa NA 

Relative 
humidity 

RHU 1% - 

Wind speed WP m/s - 

Point Source  

Distance to the 
nearest point 
source 

DIS TO PS km  
Inverse 
distance 

+ 

Emission of 
point source 

EMISSION t 
3, 5, 7, 10, 13, 
15km 

NA 

+ 

Integrated point 
source variable 

PSINDEX - + 

Road Traffic 

Distance to the 
nearest road 

DIS TO ROAD m  
Inverse 
distance 

+ 

Road length of 
major roads (5 
classes)  

ROADLENGTH m 
50, 100, 150, 200, 
300, 400, 500m 

NA 

+ 

Integrated line 
source variable 

LSINDEX - + 

NA is not applicable 
Variable name: Combining variable name with buffer size 
 

2.3.2.  Geographically weighted regression modeling. Geographically weighted regression model 
(GWR) is based on multivariate linear regression model and adds the influence of geographical 
location to regression parameters[20]. Multivariate linear regression model is essentially a global 
regression model, while GWR is a local regression model, which could generate the specific 
regression parameters at each monitoring station[16]. The Geographically Weighted Regression tool in 
ArcGIS 10.2 software was used to build the model. GWR is a linear model with the same 
preconditions as MLR, the same variables remained in the final MLR model were used in the GWR 
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modeling. In the process of modeling, due to the uneven distribution of monitoring stations in Jiangsu 
Province, the adaptive Gaussian kernel function was used to specify the nearest neighbor number and 
the Akaike Information Criterion (AICc) was adapted to identify the scope of the nucleus. 

2.4.  Model validation 
Cross validation (CV) methods are often used to verify the final model in case of model overfitting. 
Considering the relatively few monitoring stations[21], Leave-one-out cross validation (LOOCV) 
method was applied here. In addition, mean prediction error (MPE), mean relative prediction error 
(MRPE, defined as the MPE divided by the mean observed PM2.5 concentration) and root mean square 
error (RMSE) were employed to evaluate the model prediction accuracy[16]. 

3.  Results and discussion 
LUR Modeling have been operated in several areas over the world during the last 20 years. As the 
development of geographic information technology and availability of sources of data, LUR modeling 
were gradually used in large scale regions[11]. The researchers applied such models in some areas in 
China in the last 10 years[14;13]. However, prior to this, there have been no relevant researches 
carried out in Jiangsu Province. This study was the first time that LUR model was used in the whole 
area of Jiangsu Province. This study tried to improve the expression of variables (point source, road 
traffic) by calculating integrated variables. Besides, considering the spatial heterogeneity and 
nonstationarity of geographical prediction factors, traditional global regression statistical method 
(MLR) may be not the best way to model. To explore a better way to establish a LUR model, this 
study compared MLR and GWR modeling methods especially. 

3.1.  Predictor variable selection 
Bivariate correlation analysis was used to explore the correlation between predictive variables and 
PM2.5 concentration. Strong correlation variables were selected from many influencing factors for 
model building. In this study, the correlation strength was set as the only index to determine the 
contribution of characteristic variables to the spatial variation of concentration[22]. In order to reduce 
the collinearity of same type variables with different buffer radius in the subsequent multivariate linear 
regression, only the variables of the same type with the highest correlation with PM2.5 concentration 
were retained, and other similar variables were removed. After a series of screening processes, 7 valid 
predictor variables were left behind (Table 2). 

Among the 7 valid predictor variables, PSINDEX_15km ranked the highest correlation of 0.697, 
which was conformed to the reality that major sources of PM2.5 in Jiangsu are industrial emissions, 
coal combustion et al. The second highest correlated variable was EMISSION_13km, and the 
correlation between it and annual PM2.5 concentration was 0.585, which is lower than that of 
integrated variable (PSINEX_15km). The degree of correlation between the other predictor variables 
and the concentration was consistent with previous studies[23;19]. For example, population 
agglomeration increased PM2.5 concentration, water reduced pollution to a certain extent, and 
meteorological factors such as relative humidity and wind speed were negatively correlated with PM2.5 
concentration. Variables in the Emission of point source and Integrated point source variable were 
considered as mutually exclusive point source variables and combined with other variables 
respectively to construct models for PM2.5. The adjusted R2 of the two models were 0.34 and 0.52 
respectively, and the PSINDEX model was 0.18 higher than the EMISSION model. The relatively 
higher R2 suggested that point source integrated variables would partly improve the explanatory power 
of the model. Final regression equation remained 3 predictor variables, POP, WATER_500 and 
PSINDEX_15km. Higher population density and higher PSINDEX induced higher PM2.5 
concentration, while more water area would reduce PM2.5 concentration contrarily. 
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Table 2. A summary of valid predictor variables. 

Effective predictor 
variables 

Mean Std. Deviation 
Pearson 

correlation 
P value 

POP 0.26 0.37 0.204 0.047 

RHU 74.98 2.62 -0.313 0.002 

WP 2.15 0.35 -0.211 0.040 

INDUSTRY_100 1.88 7.47 0.205 0.046 

WATER_500 27.68 116.41 -0.202 0.050 

PSINDEX_15km 23.52 32.82 0.697 0.000 

EMISSION_13km 1635.43 1925.88 0.585 0.000 

3.2.  Model fitting, validation and comparison 
After stepwise multivariate linear regression, three predictor variables entered the final regression 
equation in this study (Table 3). The final 3 predictor variables were POP, WATER_500 and 
PSINDEX_15km for MLR and GWR models. It can be seen from the table that the adjusted R2 was 
0.52 and 0.62 for MLR and GWR model respectively, and the latter is about 19 % higher than the 
former. In general, when the difference between the two models’ AICc values is greater than 3, the 
model with lower AICc value will be considered as a better model[16;22]. The AICc value of GWR 
was 7.6 lower than that of MLR, which definitely meant that GWR model performed better. Residuals 
should be randomly distributed in space and not clustered. The Moran’s I was adopted to evaluate the 
spatial autocorrelation of residuals, and the smaller absolute value of Moran’s I is, the lower the spatial 
autocorrelation of residual is. GWR model outperformed MLR model by a smaller Moran’s I (0.069). 

 
Table 3. The final regression results and evaluating indicators of MLR and GWR model. 

Model Predictor variables Adjusted R2 AICc Moran’s I 

MLR POP, WATER_500, 
PSINDEX_15km 

0.52 515.5 0.178 

GWR 0.62 507.9 0.069 
 
Figure 3 shows the model fitting and LOOCV results of the MLR and GWR models. For the MLR 

and GWR models, the model fittings adjusted R2 values were 0.52 and 0.62 respectively, and the latter 
is about 19 % higher than the former. Besides, the MPE of GWR model was 0.5 lower than that of 
MLR model, and similarly was the MRPE. The RMSE of both models were relatively lower compared 
to previous studies, and GWR model performed better than MLR model by a lower RMSE (2.85). For 
LOOCV results, the LOOCV R2 of MLR was 0.38 which was much lower than model fitting R2 (0.52).  
However, the LOOCV R2 of GWR was only 0.02 lower than that of model fitting. The LOOCV results 
of MPE, MRPE and RMSE all indicated that GWR model outperformed MLR model. 

3.3.  Prediction maps of PM2.5 concentrations 
The lowest concentration of Figure 4(a) and Figure 4(b) was 49.0μg/m3 and 45.8μg/m3 respectively. 
Figure 4(a) had a highest concentration of 76.7μg/m3, while that of Figure 4(b) was 75.0μg/m3. The 
total mean PM2.5 concentrations of the two maps were 55.1μg/m3 and 55.0μg/m3 respectively. The 
upper and lower limit values of the two maps were similar, and the mean values were almost equal, 
which indicated that the global prediction accuracy of the two models was similar.  
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Figure 3. (a) MLR model fitting results; (b) GWR model fitting results; (c) MLR model 
LOOCV results; (d) GWR model LOOCV results. 

 

Figure 4. Prediction maps of PM2.5 concentrations for the MLR and GWR models. (a) 
Prediction map for the MLR model, (b) Prediction map for the GWR model. 
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However, the spatial distribution map of predicted PM2.5 concentrations from GWR model was 
definitely finer than that from MLR model, especially some certain areas. For northern part in Jiangsu, 
the map from MLR model showed a steady trend of concentration distribution, while the results from 
GWR model highlighted a high concentration area mainly around Xuzhou. The explanation for this 
phenomenon might be that there were more pollution sources in this area, resulting in a more 
significant pollution agglomeration effect. Compared with the global regression, the local regression 
highlighted this kind of agglomeration effect[2;17]. For southern part, especially for the area of Taihu 
Lake, tha map from GWR model showed higher concentration than that from MLR model. Similarly, 
although the Taihu Lake water body would reduce the pollution to a certain extent, it is worth noting 
that the area around the Taihu Lake water body has dense pollution sources, and which meant a 
pollution agglomeration effect. The local regression of the GWR model highlighted such an 
agglomeration effect, resulting in such a high concentration phenomenon[16]. 

In general, the northern parts had lower PM2.5 concentrations except the area of Xuzhou where a lot 
of industries were located. In more detail, concentration was higher in the urban area or populated area 
than suburb area or sparsely populated area, which was corresponding to the fact that population 
density had a positive effect on concentration[5;22]. Most of the low-concentration areas occured in 
areas rich in water area, such as Taihu Lake, Gaoyou Lake and Hongze Lake. However some areas 
with low population density still suffered from high PM2.5 concentration, mostly due to the industries 
located around these areas discharging a large amount of atmospheric pollutants. Compared to other 
predictor variables, point source variables (industry) had higher influence owing to the quantity and 
not very effective regulation[24]. 

4.  Conclusions 
In this study, we calculated integrated point source variables and integrated road traffic variables by 
combining emission from industries, length of main roads, wind frequency and distance to the 
industries or the roads. According to the results of integrated variable model and regular emission 
model, a model generated by integrated variable (R2=0.52) outperformed that generated by 
emission(R2=0.34). Furthermore, we compared a GWR modeling approach with traditional MLR 
model by evaluating the prediction accuracy of PM2.5 concentration in Jiangsu Province. The adjusted 
R2 of GWR and MLR models were 0.62 and 0.52 respectively, and the former was about 19% higher 
than the latter. In addition to the R2, all other evaluation indicators (MPE,MRPE and RMSE) showed 
that the GWR model was superior to the MLR model. The prediction map of annual PM2.5 
concentration in Jiangsu Province in 2015 showed that the territory of the entire Jiangsu Province 
below the ambient air quality secondary standard. Although air quality in Jiangsu Province has 
improved under some pollution prevention and control measures, there is still a long way to go to 
reach ambient air quality primary standard. All the results suggested that more appropriate expression 
of variables and the GWR modeling could definitely improve LUR modeling prediction accuracy. 
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