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Abstract. Due to close coupling between physical and information systems, an unexpected 

attack on the node of the information system will result in great operational risk of global 

energy interconnection. A defensive resource allocation strategy for cyber-physical systems is 

proposed. Various risk factors of information systems are quantitatively evaluated in this paper. 

An optimal defensive resource allocation model is built to strengthen the security and stability 

of the cyber-physical systems, which accounts for nodal vulnerability and nodal risk degree. 

Simulations results of a test power system and its corresponding communication networks 

verify the effectiveness of the proposed allocation strategy. 

1.  Introduction 

As the concept of global energy interconnection being put forward in electrical industry, more 

operational state and information of power system must be transmitted through the long distance 

telecommunication line [1-2]. Any failure of the communication node will result in data incomplete, 

seriously, the structure of the network will change due to cascading failure when the key nodes are 

attacked [3-4]. The risk factors for communication node will greatly reduce the stability and reliability 

of power system operation in a coupling cyber-physical system. 

There are numerous works to effectively measure the risk status of the information system against 

various types of attack. The removal strategies [4] based on the degrees and betweenness centralities 

often have a great effect on the vulnerability of the complex networks because the network structures 

will be changed as the vital nodes or edges being removed [6]. Therefore, it’s vital to study the 

reconstruction of the network after a failure happen. A simple “one-to-one" interdependence model 

was considered in [7] to build interdependent networks under cascade of failures. In [8], the author 

suggested that high-betweenness nodes should be planned as autonomous nodes, in order to have the 

best resiliency in an interdependent network. 

In order to assure the safety of the network under attack, literature [9] studied the steady-state effect 

of a failure in a cyber-physical system. The influence of active small clusters appearing after an attack 

on the whole network performance is studied in [10]. The degree weighting models in [11-12] are used 

to find out the key nodes in networks, and the results show that the best defensive status of nodes are 

their capable of maintaining the highest priority protective degree when the defensive resources for 

them are limited. However, the biggest shortage is that the existing models for the assessment of nodal 

vulnerability neither the linear ones nor exponential ones are difficult to reflect the features in actual 

systems due to the marginal effect and ‘trailing’ phenomenon. 
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In this paper, the importance of node is firstly assessed by means of graph theory and then the 

quantitative evaluation of risk factors is built based on nodal importance and the theory of probability. 

To reduce the risk level of the cyber-physical network, an optimal allocation model for defensive 

resources taking nodal vulnerability and nodal risk degree into account is proposed to maximize the 

usage of the limited defensive resources in the network and strengthen the security and stability of the 

cyber-physical systems. 

2.  Quantitative evaluation of risk factors 

2.1.  Nodal importance  

Since the communication network carries the real-time information and dispatch command of the 

power system, the safety of the key nodes in communication network will directly affect the security 

and stability of the cyber-physical system. Referring to complex network graph theory, this section 

puts forward the method of quantitative evaluation for nodal importance in communication system 

considering nodal degree and closeness. 

The communication network can be expressed as a simple diagram ( , )G I A . 1 2( , ,..., )NI i i i  is a 

collection of node; N is the number of communication nodes; ( )ij N NA a   is an symmetric adjacency 

matrix where 1ija   represents there is a connection between node i and node j while 0ija   

represents disjunction between two nodes. The nodal degree ik  which describe the number of adjacent 

nodes connecting to node i can be expressed as: 

 
1

N

i ij

i

k a


   (1) 

The degree index evaluates the ability of node i to establish a direct contact with the neighbor 

nodes, however, it cannot show the detail information of connection between two nodes. Therefore, the 

sum of the nodal degree ik  and its neighbor nodal degree 
jk  is used to depict the connectivity of each 

node in the realistic network, which can be expressed as: 
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Nodal closeness shows the indirect influence of one node on the others in the network, which 

means the difficulty of the path that one node to reach others. Hence, the nodal closeness is introduced 

to analyze the impact of node location in the network on the speed of information transmission. In the 

network with N nodes, the sum of the distances that a node reaching all the other nodes is not less than 

N-1. Therefore, nodal closeness im  is normalized as: 
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In equation (3), 
ijd  represents the shortest path from node i to node j. The ability of transferring 

information is preferable with a higher value of im  on each node. In fact, the information generated on 

the central node will be transmitted through the entire network in the shortest time. Hence, the nodal 

importance consists of the degree and closeness index can reflect not only the connection between two 

nodes, but also the locations of the node in the network, which is writing as: 
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2.2.  Three types of risk factors 

Due to the coupling characteristic of cyber-physical, the attack in communication network will 

increase the risk of power system significantly. Therefore, it is vital to predict the probability that 

nodes will fail against different attack events. In this paper, we take man-made attack, equipment 

damages and natural hazards into account as kinds of risk factors. 

Generally, the attackers destroy one or more communication nodes in the network, which results in 

the data incomplete when they are uploaded to the scheduling center. A "smart" attacker usually has 

the ability to master the topology of the entire information network and attempt to cause the most 

serious damage at the smallest possible cost. Therefore, nodes with greater importance are more 

vulnerable to be attacked so that the probability that each node will fail under man-made attack can be 

expressed as: 

 i i
Evevt ma

j

j

o
P

o
 


  (5) 

Communication equipment are often exposed to a complex and volatile external environment and 

experience sudden temperature change, electromagnetic interference and a lot of dust pollution, which 

will increase the uncertainty of measurement. In this paper, the probability of the failure on each node 

with equipment damages can be considered to follow the Poisson distribution, writing as: 

 (1 )
i

j iii

Event edP e e


 







     (6) 

where i  is the average accident rate of the equipment in the examined time. The probability of fault 

on each equipment is independent and only one equipment is breakdown while the others work 

normally in each accident. 

To model simply, the probability that nodes fail against natural hazards are consistent in each area 

and they are depend on the severity of the disasters. Assuming that communication network is divided 

into n regions, the probability is writing as: 

 1/i

Event nhP n    (7) 

3.  Defensive resources optimal allocation model for cyber-physical network 

3.1.  Nodal vulnerability analysis 

The vulnerability of the network involves the probability that a defensive resource will fail under 

attack, which is mainly affected by the amount of available defensive resources. If there are more 

defenders available, the system will have more defensive measures to take and then much survivable 

the network will be, and vice versa. 

The proposed linear [11] and exponential model [12] can depict the relationship between defensive 

resources and the vulnerability of their connecting nodes, however, they cannot accurately reflect the 

practical problem. For instance, the linear model cannot solve the marginal effect of the decreasing 

rate of vulnerability with the increase of available resources. For another, the exponential model has a 

serious ‘trailing’ phenomenon. Only when the available resources reach infinity, there is no risk of 

vulnerability in the network, which is seriously inconsistent with the actual situation. Therefore, to 

overcome the shortage of the above models, the power function is used in this paper to show the 

relation between the vulnerability of nodes and availability of defensive resources corresponding to 

them, which follows as: 

 
2(1 )

max

i
i

i

x
v

X
    (8) 

In Equation (8), iv  is the vulnerability of node i in information network; ix  is the number of 

available defensive resources on node i, which are abstracted from defensive strategies; max iX  is the 
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maximal requisite defensive resources to achieve the highest security level on node i, which is 

determined by the number of available resources on each node or in each sub-region. The power 

function model can not only effectively characterize the decreasing trend of the network vulnerability 

as the defensive resources increases allocation but also feature the upper limitation of allocation for 

the defenders.  

3.2.  Nodal risk assessment 

The probabilistic risk analysis (PRA) [14] is a combination of the qualitative and quantitative method, 

which is an important mathematical tool for quantitative risk assessment of complex systems. PRA 

utilizes the probabilistic model to differentiate the risk extent of network caused by various factors, 

which is helpful to find out the weak links in the systems and enhance the safety of the systems. PRA 

is mainly divided into the following parts as: find the most vital risk factors, propose the possible 

distribution of risk factors, put forward and discuss the acceptable risk decisions. Based on the theory 

of PRA, a nodal risk assessment model is proposed to quantize risk factors as: 

 i i i ir p v c   (9) 

where ir  is the expect loss when node i fail, which represents the risk degree of node i. ip  is the 

probability that node i affected by risk factors. iv  is the vulnerability of node i calculated via equation 

(8), which represents the defensive ability of node i. ic  is the maximum load-shedding in electricity 

network when communication node i fail, which features the coupling relationship of cyber-physical 

systems. The calculating method of ic  can be seen in our formal work in [14]. 

3.3.  Optimal configuration model for defensive resources  

Due to the coupling characteristic of the cyber-physical system, after communication equipment being 

damaged, the electricity system will cut load demand because of the cascading failure. Hence, the 

optimal allocation model for defensive resources is established in this paper to minimize network risk 

utilizing limited defenders. The risk of man-made attack, communication quality and natural disaster 

on systems are indicated by different weights. The mathematical model of optimal allocation for 

defensive resources is as follows: 

 
2

1 1

min (1 )
max

n n
i

i i i i i

i i i

x
R p v c p c

X 

      (10) 

 . .         0 maxi is t x X    (11) 
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In the objective function, R is the risk level of the entire network. n is the number of 

communication nodes. B is the maximum available defensive resources on node i, which should be 

limited within
1

max
n

i

i

X B


 . The probability ip  of node i consider the risk factors including man-

made attacks, equipment damages and natural hazards, which are defined as ,

i

event map , ,

i

event edp  and 

,

i

event nhp  respectively. 

4.  Simulation results 

4.1.  Test system 

New England 39-node power network is used as the physical system [6], which can be represented as 

two topologies of communication network named random topology and binary topology with Pajek. In 



EEEP2018

IOP Conf. Series: Earth and Environmental Science 227 (2019) 042002

IOP Publishing

doi:10.1088/1755-1315/227/4/042002

5

 

 

 

 

 

 

Figure 1 which is a random topology of communication network, node 1-39 is corresponding to the 

same number of node in power network respectively while node 40 is a dispatch center (DC). The 

information are directly transmitted to CDC. In Figure 2 which is a binary topology communication 

network, node 1-39 is corresponding to the same number of node in power network respectively and 

node 40 is a central dispatch center (CDC) while node 41-50 represent the regional dispatch center 

(RDC) and node 51 is a standby dispatch center (SDC). The information is firstly centralized on RDC 

and then transmitted to CDC. RDCs are the relay nodes of their regions, for instance, RDC1 is a data 

collecting point of node 19, 20, 33 and 34.    
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Figure 1. Random topology. Figure 2. Binary topology. 

                       

The number of nodes that need to strengthen the defensive ability are 39 for random topology while 

that for binary topology are 49. For both network topologies, the maximum defensive resources 

required for each node to be a best security level are 20 under man-made attacks and equipment 

damage. When considering natural hazards, two types of communication network are divided into 10 

regions and the defensive resources required for each region to achieve the best security level are 60. 

The total amount of defensive resources are set as B = 200, 300, 400 and 500 in each simulation. The 

value of B is related to the total number of available network resources in actual projects. In this paper, 

we make some simple assumptions for B. Besides, it is a non-linear programming problem to find the 

optimal solution for the model proposed in 3.3, which is solved by the fmincon toolbox in MATLAB. 

4.2.  Resource allocation with different risk factors  

The results of defensive resources allocation against man-made attacks in two network topologies are 

shown in Figure 3 and Figure 4. There are most defensive resources acquired at node 14 in random 

topology and at node 49 in binary topology because the probability that these nodes will fail under 

man-made attacks in their topologies are the highest among all nodes, up to 0.05 and 0.04 respectively. 

Therefore, the higher risk degree of nodes are, the more defenders they will need. With the total 

amount of defensive resources decreasing, the defensive resources allocated at each node reduce and 

some of are close to 0. 

  

Figure 3. Man-made attack in random topology. Figure 4. Man-made attack in binary topology. 
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The risk degree with the factor of equipment damage are determined by the installed time and 

number of usage of the devices. In Figure 5 and Figure 6, there are some nodes without the 

requirement of defensive resources no matter how much the total number of the defensive resources 

are. 

 

  

Figure 5. Equipment damage in random topology Figure 6. Equipment damage in binary topology. 

     

The results of defensive resources allocation against natural hazards in two network topologies are 

depicted in Figure 7 and Figure 8. Taking the case of B=500 as an example, region 2 and 9 in random 

topology and region 4, 5 and 9 in binary topology are allocated more defensive resources, which are 

more than 50 in two topologies. Therefore, the defensive resources such as lightning, waterproofing, 

fire prevention should be firstly deployed in these regions. In addition, as the total amount of defense 

resources decreases, the peak and valley differences of the curve become larger. 

 

  

Figure 7. Natural Hazard in random topology. Figure 8. Natural Hazard in binary topology. 

   

5.  Conclusions 

Firstly, the importance of nodes and the risk degree of nodes against communication network 

including man-made attack, equipment damage and natural hazards are assessed through the graph 

theory and probability basis. Secondly, an optimal configuration model for defensive resources is 

proposed to rationally distribute the defenders in the network and reduce the risk level of the entire 

cyber-physical network. Finally, simulations results of New England 39-node power network and its 

corresponding communication networks demonstrate the effectiveness of the modelling. 
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