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Abstract. This paper presents a second order cone programming (SOCP) formulation of the 
dynamic reactive power optimization (DROPF) problem for the voltage source converter 
(VSC)-based high-voltage direct current (HVDC) transmission network, considering reactive 
power support of the doubly fed induction generator (DFIG). In this model, the reactive power 
support of DFIG, VAR compensators, the position of tap-changer and the states of VSC 
converters are formulated as continuous and discrete decision variables. By using 
approximation techniques, the original non-convex optimisation model is converted into a 
mixed-integer second-order cone programming model. Later, the SOCP formulation can be 
solved using many standard optimization packages. Then a DC system with VSC technology is 
modelled in the IEEE 30-bus example system. The SOCP formulation of AC-DC DROPF is 
applied to the modified IEEE 30-bus example system and the results are discussed. 

1.  Introduction 
Compared with the AC system, the DC system has strong controllability, which provides a favorable 
control method for the power flow optimization of the hybrid AC/DC system. In [1], the reactive 
power optimization quadratic model of the AC/DC system is proposed and solved by the interior point 
method, but the discreteness of the control variables is not considered. Considering the regulating 
capacity of DC power transmission system to power and voltage, a new model of dynamic reactive 
power optimization of AC/DC system is proposed in [2].The objective of the model is to minimize all-
day network loss of the AC/DC system. In [3], a new strategy is proposed to optimizing reactive 
power of AC/DC power system, based on singular value decomposition and predictor-corrector 
primal-dual interior point algorithm. In [4], In order to minimize both active power loss and square 
sum of voltage deviation in all key nodes, a multi-objective reactive power optimization model of 
AC/DC interconnection system was built and an improved normalized normal constraint method was 
proposed to obtain Pareto optimal solutions of this model. In order to avoid frequent power regulation 
of DC transmission lines, a dynamic reactive power optimization model of AC/DC power systems, 
which takes into consideration the DC power regulation limits, is established and then solved by using 
the generalized Benders decomposition[5].  

Conventionally two types of converter, voltage source converters (VSCs) and current source 
converters (CSCs), are employed for two terminal HVDC links. Especially, the voltage source 
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converters (VSCs) are suitable for HVDC systems, compared to the current source converters (CSCs), 
since VSCs can regulate the reactive and active power in such a way to maintain the AC side voltage. 
VSCs offer more flexibility than what CSCs do[6], where only the active power can be modulated. [7] 
presents a second order cone programming (SOCP) formulation of the optimal power flow problem 
for AC-DC systems with voltage source converter (VSC) technology. Approximation techniques have 
been used to derive the SOCP formulation of the AC-DC OPF problem. [8] develops an OPF with the 
hybrid VSC-HVDC transmission and active distribution networks to optimally schedule the generation 
output and voltage regulation of both networks, which leads to a non-convex programming model. 
Furthermore, the non-convex power flow equations are based on the second-order cone programming 
(SOCP) relaxation approach. SOCP relaxation approach is used since there are great advantages to 
recognizing a convex optimization problem. One advantage is that the problem can be solved very 
reliably and efficiently. Another is related to theoretical or conceptual advantages of formulating a 
problem as a convex optimization problem, such that the global optimal solution can be guaranteed by 
Karush–Kuhn–Tucker conditions. [9] presents an optimal reactive power flow model with voltage 
source converters, which is solved by branch and bound method and primal dual interior point method. 

A dynamic reactive power optimization model with VSC and considering reactive power support 
of the DFIG is proposed. The reactive power support of DFIG, VAR compensators, the position of 
tap-changer and the states of VSC converters are formulated as continuous and discrete decision 
variables. By using approximation techniques, the original non-convex optimization model is 
converted into a mixed-integer second-order cone programming model.  

The remaining of this paper is organized as follows: Section 2 presents a general ROPF model 
considering the VSC-HVDC and reactive power support of DFIG-based wind turbines. In Section 3, 
the SOCP relaxation method is proposed to efficiently solve the proposed model. Furthermore, 
numerical results on test systems demonstrate the effectiveness of the proposed method in Section 4. 
Finally, conclusions are drawn in Section 5. 

2.  Multi-period reactive power optimization considering VSC and DFIG  
In this paper, considering VSC and DFIG, operation of tap-changer is investigated to minimize energy 
loss over multiple periods while maintaining the voltage magnitude within a desirable range. The 
specific optimization models with physical constraints are formulated as follows: 

2.1.  Objective function 
The objective of the model is the minimum all-day network loss of the AC/DC grid. This is described 
as: 

 2
,

1 1

min
T T

loss
t ij ij t

t t ij E

P r I
  

 
                                                 (1) 

Where, T is the number of periods; E is the set of branches; ijr is the resistance of branch (i, j); ,ij tI  

is the current of branch (i, j) at time period t.
 

2.2.  AC line flow constraints 
Let consider a conventional direction for each line starting from sending bus and ending to receiving 
bus. The active and reactive power balance equations for AC node other than PCCs can be written as 
follows: 
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                   , , , ,+g W L
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Where  
                  2

, ,i t i tV V%  , 2
, ,ij t ij tI I%  

_AC B and _AC E  are nodes and branch sets in the AC system, respectively;  j is the set of 

all parents of bus j,  j is the set of all children of bus j; ijx  is the reactance of branch (i, j); jg / jb

is the shunt conductance/susceptance from bus j to ground; ,i tV voltage of bus j at time period t. ,j tP

and ,j tQ  are active and reactive power at bus j at time period t, respectively. ,
g
j tP / ,

g
j tQ , ,

W
j tP / W

,j tQ , 

,
L
j tP / ,

L
j tQ  are active/reactive power flow of dispatched thermal generation, DFIG and load at bus j at 

time period t, respectively. ,
C
j tQ and ,

CB
j tQ are reactive of the static var compensators and the capacitor 

banks, respectively. 

2.3.  VSC converter constraints 
In this paper, the impedance of the converter station , ,VSC i VSC iR jX  is equivalent to the AC branch, 

which is combined into the AC system for processing, so the active power of the input VSC is equal to 
the DC power of the VSC output, namely: 

                        , , , , , , _VSC i t dc i tP P t i VSC B                                                                       (3a)  

Where, _VSC B is the set of the point of common connection (PCC).   

In addition, , , , ,VSC i t VSC i tV   satisfy the following relationship [10]:  

               , , , , ,

3
, , _

2VSC i t i t dc i tV M V t i VSC B                                                                (3b)  

Where,  is power transfer efficiency of converter, and 0 1  ; When the modulation model is 

SPWM,
3

2
  ; When the modulation model is SVPWM, 1  ; M is the modulation factor of 

VSCs. In this paper, we set 
3

2
  and 0 1M  . 

2.4.  OLTC constraints  

im imP jQ mV
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mo mo moz r jx 
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Figure 1. Branch flow model with OLTC. 



EEEP2018

IOP Conf. Series: Earth and Environmental Science 227 (2019) 032027

IOP Publishing

doi:10.1088/1755-1315/227/3/032027

4

 
 
 
 
 
 

 The model of the OLTC model is shown in Figure 1, and the virtual node o is introduced. The 

equivalent impedance of the branch (m,o) is mo mo moz r jx  ,which can be regarded as a conventional 

AC branch processing . The voltage of the virtual node o is  
2

, ,o t mn n tV k V% % ,  , oltct o B                                                                (4a)  

Where, oltcB is the set of virtual nodes with OLTC; mnk is the tap ratio of OLTC branch (m,n), 

which is the discrete variables; ,o tV% and ,n tV%  are square of voltage magnitude of node o and  n, 

respectively; Set 2
,o t mnK k , then  

           , , ,o t o t n tV K V% %  , , oltct o B                                                       (4b)  

Since ,o tK is a non-integer discrete variable, the following transformation needs to be conducted in 

calculations:  
               , , , , , ,OLTC oltc

o t o o m o t m
m

K K K t o B                                                         (4c)  

Where, oK  is the lower bound of square of tap ratio for OLTC connected to bus j; ,o mK  is step 

size of square of tap ratio; , ,
OLTC
o t m is a dummy binary variable for bus j equipped with OLTC. 

Moreover, in practical operations the tap change times for an OLTC are strictly constrained, that is, 
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         , ,
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Where, ,
,

OLTC IN
o t and ,

,
OLTC DE
o t are regulation status of OLTC bus o at time t, which indicate that the 

tap positions cannot increase and decrease simultaneously. oSR is the range of regulation of OLTC 

connected to bus o. OLTC
oN is the maximum of regulation number of OLTC connected to bus o.  

2.5.  DFIG-based wind power constraints 
In most practical cases of China, the typically centralized integrated wind farms are widely used. In 
the traditional optimization model, due to the constant power factor control mode is generally adopted, 
the wind farms reactive power output is regarded as a fixed value, which cannot fully reflect the 
reactive power output characteristics of the wind farms. This paper uses the capacity curve of the wind 
farms to analyze its reactive support capacity. The linearized method can be used to obtain the model 
of the DFIG [11], which are:  
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Where, ,
W
j tP are ,

W
j tQ the active and reactive power of the DFIG-based wind at time t, respectively; 

( W
jQ ,0), ( 1W

jQ , 1W
jP ), ( 2W

jQ , 2W
jP ), ( 3W

jQ , 3W
jP ), ( 4W

jQ , 4W
jP ) and ( W

jQ ,0) are the 6 corresponding 

feature points of the DFIG-based wind.  

2.6.  Security Constraints 
 The security constraints include:  

•  AC/DC control variables including real and reactive power generations, controlled shunt 
capacitors, tap-changing; 

• AC/DC network security constraints including AC/DC transmission flow and bus voltage limits, 
and limits to DC currents, voltages, and power of converters; 

3.  Proposed SOCP relaxation  
Obviously, the DROPF model of (1)-(4) is a non-convex programming model due to the non-
convexity resulted from the non-convex power flow equations, whose global optimal solutions are 
difficult to obtain. Generally, it is expected that the relaxed model is a convex problem, since there are 
great advantages to recognizing a convex optimization problem. 

Now, (2d) can be reformulated as standard second-order conic constraints as: 

,

, , ,

, , 2

2

2 _
ij t

ij t ij t j t

ij t j t

P

Q I V ij AC E

I V

   


% %

% %
，                                    (6a)  

However, the constraint (3b) is non-convex quadratic equalities. Then, the conic relaxation is 
performed by relaxing the quadratic equalities into inequalities. Thus, it yields [10]:  

     , , , ,0.5 , , _VSC i t dc i tV V t i VSC B                                            (6b)  

After relaxation, the formula is a SOCP model with mixed integer variables. There are many 
standard optimization packages (e.g. CPLEX, MOSEK, GUROBI etc.) that can be used to efficiently 
solve the SOCP. 

 
 
 
 
Table 1.   Branch parameters in DC 

network. 

 
TBUS FBUS r/p.u.  
2 6 0.037 
1 18 0.047 

 

Figure 2. Modified IEEE 30-bus test system with embedded 
DC system. 
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4.  Numerical examples  

4.1.  Modified IEEE 30-bus test system with embedded DC system 
To evaluate the proposed model, the IEEE 30-bus test system is modified and as shown in Figure 2. 
The detailed original parameters of IEEE 30-bus test system are obtained from MATPOWER. 
Converters VSC1, VSC2, VSC3 and VSC4 are connected to AC buses 2, 6, 1and 18, respectively. 
Since DC grid and their associated converters have not been implemented in MATPOWER software, 
we give the detailed parameters of DC branch in Table 1. 

4.2.  Optimization result analysis  
The total power loss rate before the optimization is 5.26%, while the loss rate optimized is 3.41%, 
reducing the loss rate of 1.85%. It is worth noting that the optimized loss is the result of power flow 
calculation based on the AC/DC power flow equation after the fixed capacitor switching state and the 
unit reactive power output, thus ensuring the accuracy of the network loss calculation result. 

 Figure 3 and Figure 4 show the optimal distribution strategy for optimal power and DC node 
voltage for AC-DC parallel lines throughout the day. It can be seen from the figure that the total active 
power transmitted by the AC and DC sections in different time periods is different, and the power 
allocated by the DC parallel lines is also different. Therefore, when the active power of the AC-DC 
section transmission changes, in order to achieve the minimum network loss, the transmission power 
of the DC line should be adjusted, and the constant power control mode cannot be used to maintain the 
DC power. Relative AC system reactive power compensation and transformers, HVDC transmission 
power in order to meet changing requirements, require frequent adjustment coordinated control 
apparatus converter stations, in order to make the system run at the optimal state. Therefore, the 
literature [7] suggests not setting the control mode of the VSC before optimization, but using it as an 
optimization variable to set the control mode according to the optimized result.  

 

Figure 3.  Curve of voltage of the DC node. Figure 4.  Curve of power flow of the DC 
branch. 

                       
Influence of reactive power support capacity of DFIG  
In the traditional power grid optimization, it doesn’t consider the reactive power support capability 

of the DFIG, but merely considers the simple constraints of its active and reactive upper and lower 
limits. In this paper, the capacity curve is used to characterize the DFIG active and reactive coupling 
with reactive power support. Considering of the reactive power of the DFIG, the system loss will be 
smaller than the case of neglecting its reactive power, That is, the system will get better optimization 
effect than before considering the reactive power support capability of the DFIG. At the same time, 
Figure 5 shows that when considering the reactive power output of the DFIG, the required reactive 
power compensation device will decrease, especially during the peak load period, because DFIG 
provides powerful reactive power support.  
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Figure 5.  Comparison for the reactive power compensation with/without DFIG. 

5.  Conclusions  
In this paper, the dynamic reactive power optimization model considering VSC and DFIG is 
established. Through the analysis of the example, the following conclusions are obtained:  

1) The reactive power regulation of the converter station is bidirectional, which is significantly 
different from the capacitor reactive compensation in the conventional AC grid;  

2) Considering the DFIG reactive power support capability, the system loss will be smaller than the 
case of ignoring its reactive power, and will get better optimization results than before. When 
considering DFIG reactive power, the required reactive power compensation device will decrease, 
especially during the peak load period, because DFIG provides powerful reactive power support.  
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