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Abstract. With the increasing penetration of distributed wind power, the problem of wind 

power curtailment is becoming more and more serious due to the unreasonable installed 

capacity. A method is proposed to optimize the wind power capacity allocation for regional 

power grids. The main factors that affect wind power accommodation are analyzed according 

to the wind speed probability density function and the wind power output model. The 

correlation model of different wind farms is established by the Frank-Copula function. Aiming 

at reducing the total wind power curtailment, a distributed wind power installed capacity 

optimization method is proposed with the correlation model. The optimal capacity allocation of 

the system is calculated by genetic algorithm and the effectiveness of the proposed method is 

verified by the case of IEEE RTS-79. 

1.  Introduction 

At present, Chinese renewable energy utilization is dominated by wind power. Wind resource 

characteristics cause the intermittent, volatility, uncertainty of wind power output [1]. When the 

installed capacity of wind power is small, its output power can be completely accommodated by the 

power grid. With the increasing scale of installed wind power, more peak regulation capacity is 

demanded in power grid. The problem of wind power accommodation has become increasingly 

serious. And the wind power curtailment occurred inevitably. In the period of wind farm design, how 

to determine the total installed capacity of distributed wind power in a regional grid has become an 

urgent problem [2-3]. 

Many scholars have studied the correlation of wind power. In the literature [4], a method based on 

Copula function is proposed for building the joint probability distribution of multi-wind farm power 

output. Jian J B studied the wind speed correlation of distributed wind farms at different locations 

based on Copula function and mean-variance model [5]. Pan X established a wind farm model based 

on the mixed Copula function [6]. Based on the Coupla theory, Zhang Y established the correlation 

between the two wind farms [7].In the literature [8],a dynamic backtracking framework based on the 

extended Kalman filter is applied to predict the wind generation and the dynamic spatial correlations 

for the wind farms.Zhou H took into account the inherent time correlation of the target wind speed and 

its spatial correlation with reference wind farm [9]. 
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In the analysis of wind power capacity, In the literature [10], based on the non-sequential Monte 

Carlo simulation method, the probability of peak regulation shortage of wind power access grid are 

calculated. Fan P established an analytical model for wind power accommodation capacity with the 

goal of minimum operating cost [11]. In the literature [12], the optimal wind capacity allocation target 

is set by using voltage stability as a constraint. Alismail F considered two factors of wind power 

uncertainty and the availability of conventional generation units, wind power installed capacity 

optimization model was established [13]. In the literature [14], the maximum access capacity of wind 

farm in the region grid is calculated, based on the particle swarm optimization. Ye C took the peaking 

capacity of the power grid as one of the constraints and evaluated the wind power capacity of the 

power grid [15]. In the literature [16], the optimal wind power acceptance power of the grid is 

analyzed from the perspective of energy consumption. 

Although many scholars have optimized the wind power access capacity through many different 

constraints, including economy, power grid peaking capability, voltage stability, power supply 

reliability, etc. They did not consider the impact of the correlation of multiple wind farms in the 

regional power grid on wind power access capacity. 

Based on the correlation of distributed wind power output, this paper analyzes the relationship 

between different wind power installed capacity allocation and wind curtailment ratio. By using 

genetic algorithm, the optimal allocation of distributed wind power installed capacity in regional 

power grid is realized. The proposed method can accurately reflect the correlation of wind power, help 

planners understand the wind power accommodation capacity, and provides technical support for 

capacity allocation optimization of large scale distributed wind power accessing regional power grid. 

2.  Models 

The randomness and uncontrollability of wind power is one of the main factors affecting its 

accommodation capacity. The wind power output depends mainly on the wind speed at the high point 

of the hub. 

2.1.  Wind power model 

2.1.1.  Wind speed model The wind speed is generally in the Weibull distribution, and the probability 

density function is shown in equation (1). 
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where v is wind speed, c is scale parameter, k is a shape parameter. In the calculation analysis, the 

Weibull distribution parameter of the wind speed is known, and the wind speed sequence can be 

obtained by the inverse function of the cumulative probability function. 

2.1.2.  Wind power output model The wind power output model is generally described by the wind 

turbine power characteristic curve, as shown by the piecewise function of equation (2). 
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Where vci is cut into the wind speed，vco is cut out the wind speed, vr is rated wind speed, Pr is the 

rated power, P(v) is the corresponding wind turbine output power when the wind speed is v. 

2.2.  Factors affecting wind power accommodation capacity 

On the grid side, the main factors affecting wind power accommodation capacity are as follows. 
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2.2.1.  Grid power balance constraints The load and generator output in the power grid is a dynamic 

balancing process. The active power of the generator should be equal to the active power of the system 

load. The power balance constraint is as shown in equation (3): 

 
1 1

0
n n

Gi Li

i i

P P
 

    (3) 

Where PGi is the active output of the ith generator; PLi is the ith load active power. 

2.2.2.  The thermal power unit peak regulation capacity constraint When the output of the load and the 

wind power fluctuates, the output change of the conventional thermal power unit is: 

  1Gi Li Wi G i
P P P P


     (4) 

Where ΔPGi is the magnitude of the change in the power output of the unit during a certain period 

of time; PLi is the active power of system load at the ith moment; PWi is the active power of wind power 

at the ith moment; PG(i-1) is the active power output of the thermal power unit at the (i-1)th moment. 

Due to the limitation of the output power regulation rate (climbing rate) of the conventional 

thermal power unit, when the fluctuation of the wind output power causes the power variation of the 

conventional unit to be greater than the maximum climbing rate, the wind curtailment phenomenon 

will occur. 

3.  Theory 

Wind power output curve is correlated and nonlinear. Copula theory provides an effective method for 

wind power correlation analysis. 

3.1.  Copula theory 

3.1.1.  Copula function The joint distribution function of an N-dimensional variable can be described 

by the edge distribution of the N variables and a Copula function, as shown in equation (5): 

        1 2 1 1 2 2, ,..., , ,...,n n nG x x x C G x G x G x     (5) 

Where G(x1,x2,..,xn) is the joint distribution function of the variable; Gi(xi) is the edge distribution 

function of the variable; C(G1,G2,G3,…,Gn) is Copula function. 

Typical Copula functions include normal Copula, t-Copula, Frank-Copula, Clayton-Copula, 

Gumbel-Copula functions, etc., where Frank-Copula, Clayton-Copula, and Gumbel-Copula function 

forms are as shown in equations (6) to (8): 
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3.1.2.  Kernel density estimation In the Copula correlation analysis, the sample data needs to be 

subjected to kernel density estimation to obtain the edge probability density distribution. The kernel 

density is estimated based on the distribution characteristics of the data. t(x) is the kernel density 

estimation function value, the influence of these points on t(x) can be judged according to the distance 

between x and each point in x neighbourhood. X1, X2, ..., Xn are discrete samples from the measured 

data, and the density function estimate at x is as shown in equation (9): 
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Where n is the number of samples; h is the bandwidth; K(u) is the kernel function that satisfies 

equation (10): 
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3.1.3.  Correlation coefficient The correlation coefficient represents the degree of correlation between 

variables, including Pearson linear correlation coefficient ρ, Kendall rank correlation coefficient τ, 

Spearman rank correlation coefficient ρ and so on. The linear correlation coefficient describes the 

linear relationship between the two variables, while the Kendall rank correlation coefficient and the 

Spearman rank correlation coefficient can describe the nonlinear relationship between the two 

variables. In the Copula correlation modeling, the Copula function type is selected according to the 

correlation coefficient. 

3.2.  Wind power correlation 

The correlation analysis of wind power is essentially the correlation analysis of wind speed in different 

places. Through the analysis of wind speed correlation, the purpose of distributed wind power 

correlation analysis can be achieved. Based on the above Copula theoretical analysis method, the wind 

correlation analysis implementation steps are as follows. 

1) Data preparation and pre-processing. The measured wind speed data of distributed wind power 

in different places are selected. The data record length is generally one year or more. The measured 

data can be used for subsequent calculation and analysis after pre-processing. Data preprocessing 

mainly includes abnormal data identification and elimination, missing point data reconstruction, data 

time benchmarking, etc. These three aspects of processing are also the main factors affecting the 

accuracy of subsequent calculations. 

2) Wind speed kernel density estimation. For the pre-processed wind speed data, the kernel density 

is estimated by using equation (9). The result should correspond with the Weibull distribution model 

of wind speed proposed by equation (1). 

3) Kendall correlation analysis. The wind speed is nonlinearly correlated. The Kendall rank 

correlation coefficient is used as the basis for selecting the Copula function. Let the two wind speed 

variables be v1 and v2 respectively, and the Kendall rank correlation coefficient τ be calculated as 

equation (11): 

      1 2 1 2 1 2 1 2
= 0 0P v v t t P v v t t                (11) 

Where P[(v1-v2)(t1-t2)>0] is the probability of harmony between the two wind speed variables, 

P[(v1-v2)(t1-t2)>0] is opposite; t1, t2 is the probability of distribution of wind speed variables. 

4.  Solution methodology 

The wind power accommodation capacity is affected by many factors. In this case, the peak regulation 

capacity of the power grid is the key constraint factor. In order to reduce the total wind power 

curtailment, the distributed wind power is divided into regional power grids. By analyzing the 

relationship between installed capacity, installed proportion and wind power curtailment, and then the 

configuration optimization under certain installed capacity is realized. 

According to the wind speed data, select the time length t (t≤data recording time length) and the 

interval period T (T≥data sampling point interval). N=t/T is the number of data sampling points. X is 

the installed capacity and K is the installed proportion. R is the ratio of total wind power curtailment to 

total wind power, as shown in equation (12): 
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Where PWsi is the wind power curtailment at the ith sampling time, PWti is the theoretical power 

generation at the ith sampling time. PWti is the sum of the theoretical wind power of the two regions. 

PWsi is determined by equation (13): 

  =
Wsi Wti Li Gi

P P P P   (13) 

At the ith sampling moment, the system load PLi is a constant value; The conventional thermal 

power unit output PGi is constrained by the unit capacity PGN, the minimum output rate kGpmin and the 

maximum grade rate kGpmax, as shown in equation (14): 
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Where PG(i-1) is the output of the thermal power unit at the (i-1)th sampling time. 

The problem can be solved by genetic algorithm. Under the condition that the installed capacity X 

is constant, R(X, Kj) is the fitness of the individual, and the minimum value corresponds to the optimal 

solution. 

5.  Test network 

The validation example uses IEEE RTS-79. In this example, the installed capacity of thermal power 

for this regional power grid is 3310 MW. The maximum load of the system of this example is 2850 

MW. The annual load sequence is shown in Figure 1. 

 

 

Figure 1. Annual load sequence. 

 

 
(a) Site A 

 
(b) Site B 

Figure 2. Annual wind speed sequence. 
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This paper selects the actual wind speed data of two adjacent wind farms in Hebei Province, use 

hub height wind speed measurement and the measured height is 90 meters. Wind speed data are 

generated by Weibull distribution. The parameters of Weibull distribution are determined by the 

characteristics of actual data. The k of site A is 1.58 and the c is 3.14. The k of site B is 1.39 and the c 

is 3.2. The method proposed in this paper assumes that the wind turbine is always perfectly windward, 

and the wind power optimal access capacity is calculated on the premise. Therefore, the wind direction 

information is not considered, and the wind speed information is mainly collected. The annual wind 

speed sequence of two places is shown in Figure 2. 

6.  Results and discussions 

 
(a) Permeability of different installed capacity 

 
(b)Curtailment rate of different installed capacity 

 
(c) Optimal ratio of different installed capacity 

Figure 3. Optimization results of wind power installed capacity. 



EEEP2018

IOP Conf. Series: Earth and Environmental Science 227 (2019) 032021

IOP Publishing

doi:10.1088/1755-1315/227/3/032021

7

 

 

 

 

 

 

According to the result of Kendall coefficient, Frank-Copula function is selected for correlation 

modeling. The parameter α=12.654 in formula (6) is obtained from the maximum likelihood 

estimation. Using the genetic algorithm, the reproduction algebra is 200, the population number is 50, 

the mutation probability is 0.01, the crossing probability is 0.25, the optimization results of the 

installed capacity in two places. The range of installed capacity is 300 ~ 800MW. The results are 

shown in Figure 3. 

From Figure 3, it can be seen that when the total capacity of wind power installed at two places is 

400MW, the wind power permeability is 11.39%, and the ratio of wind power curtailment is less than 

5%.The optimal capacity allocation ratio of site A and site B is 1.20, site A installed 218MW, and site 

B installed 182MW, and the system can better accommodate wind energy. With the increasing 

permeability of wind power in the system, the ratio of wind power curtailment also increases. When 

the wind power permeability is above 20%, the ratio of wind power curtailment is 8.78%, which 

exceeds the 8.5% of the national average wind power curtailment level in 2014. It shows that the 

accommodation ability of the system is insufficient, and the amount of wind power generation is 

wasted seriously. 

7.  Conclusions 

Based on Frank-Copula theory, a correlation analysis model of wind power output is established in 

this paper. According to the wind resources of different locations, the proportion of installed capacity 

in different locations is optimized and the wind power curtailment is decreased under the condition of 

certain total installed capacity of wind power.  

In the wind power operation, the failure rate of the turbine can not be ignored. In the subsequent 

work, the Monte Carlo method can be used to introduce the factor into the optimization allocation of 

the wind power installed capacity of the regional power grid. 
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