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Abstract. The building façade not only provides the aesthetic signature of a building, but also 

important functions, such as daylight provision, glare protection, solar gain management and 

visual contact with the outside, which make the building usable and energy efficient. These 

functions often oppose each other, so the selection and design of façade systems and their 

control for a certain building application should depend on those functions that the designer 

wants to promote to the detriment of the other functions. In the context of the H2020 RenoZEB 

project, this paper presents a workflow for the conceptual planning of façade systems as 

applied to building retrofitting. The proposed workflow consists of analysing the space from 

the point of view of the functions of its façade. In a first step, the analysis of the case study 

leads to the definition of the design requirements, i.e. the relevance of the different façade 

functions and their priorities. The second step involves the selection of a suitable fenestration 

system and control strategy for the retrofit solution. In this step, an optimization process for the 

control strategy is proposed based on state-of-the-art thermal and daylighting simulations. In a 

third step, the annual performance of the retrofit solution is evaluated in order to check if the 

requirements are fulfilled. The proposed workflow is illustrated with a case study, in which the 

automation strategy of a retrofitted façade system is optimized for two different applications: a 

residential and an office building in Bilbao (Spain). 

Keywords: retrofit, façade, comfort, energy efficiency, building simulation, daylight. 

1. Introduction 

The building façade is in charge of important building functions for its occupants, such as visual 

contact with the outside, daylight provision, glare protection, solar gain management, security and 

privacy. Movable shading devices or switchable elements are necessary in order to dynamically 

balance the different façade functions, which are of varying relevance, depending on the time of the 

day and season. This implies the consideration of a control strategy. Several studies show that manual 

control is neither optimized in terms of energy efficiency nor in terms of comfort. Building occupants 

generally close a shading system to prevent direct solar radiation but then forget to retract it [1]. 
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Commercial automatic control of fenestration systems, on the other hand, often consists of an on/off 

strategy activated on the basis of an outdoor illuminance sensor installed on the rooftop or an indoor 

luminance meter on the ceiling in order to estimate workspace illuminance [2]. Numerous studies have 

shown that these control systems have low occupant acceptance [3]. User dissatisfaction might be 

caused by the lack of consideration of all (or at least the most important) facade functions in the 

control strategy.  

Nevertheless, control strategies for façade systems are attracting increasing attention in the context 

of room automation systems and smart-buildings. Modern room control units give the user direct 

access to the room temperature set point, the lighting control and the control of the shading system 

through smartphones and tablets applications. 

Innovative control strategies for façade systems may depend on thermal and daylighting variables. 

These can be measured by a set of sensors in the room or dynamically calculated by simulations [4]. 

The controlling variables and their priority must be chosen depending on the façade functions to be 

promoted. Example of controlling variables are the occupation, time of the day, the day of the year, 

the indoor and outdoor air temperatures, the exterior solar irradiance on the roof/at the façade, as well 

as horizontal and vertical illuminances. 

This paper presents a workflow for the conceptual planning of façade systems that can be applied to 

different tertiary and residential buildings. The proposed workflow consists of analysing the space 

from the point of view of the functions of its façade and then selecting a suitable fenestration system 

and control strategy based on state-of-the-art building simulations. The steps of the workflow are 

shown in figure 1. 

In this study, the proposed workflow is illustrated by a case study. This consists of two west-

oriented rooms in Bilbao (Spain) with two different uses: an office and a residential apartment. Both 

buildings share the same existing and retrofit fenestration system. The case study focuses on how to 

optimize the control strategy of a room automation system for each application, office and residential, 

based on state-of-the-art thermal and dynamic simulations. 

 

 

Figure 1. Diagram of the proposed workflow for retrofitting façade systems. 

2. Analysis of the case study and definition of requirements 

The first step of the proposed workflow is to analyse the case study in order to determine its 

requirements for the façade, i.e. the relevance of the different façade functions for the particular case 

study.  

In order to define specific requirements for the façade system, the different façade functions must 

be quantified with metrics. This poses a specific problem, because some functions are easier to 

quantify than others. For example, numerous studies have shown that the daylight autonomy is a good 

metric for the evaluation of dynamic daylighting [5], but a commonly accepted metric for the view 

contact with the outside does not exist. Another example is the quantification of glare protection. 

Dynamic glare is still very difficult to quantify, requiring detailed characterization of fenestration 

systems and costly computation capacity. A suitable set of metrics for a specific case study depends on 

the scope of the analysis and on the preselection of fenestration systems. The metrics that can be used 

to quantify the different facade functions are summarized in table 1.  
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Table 1. Metrics for different façade functions. The list is not exhaustive. There can be other 

functions. 

Function Metrics 

Visual contact with the 

outside 

Direct-direct transmittance in the visible spectral range above a 

threshold (e.g. 3%) 

Glare protection Percentage of occupied hours with Daylight Glare Probability 

index [6] below a threshold (e.g. 0.45) 

Same as previous but using the vertical illuminance (e.g. 3500 

lux) 

Daylight provision Percentage of occupied hours with average horizontal illuminance 

above a threshold (e.g. 300 lux) 

Daylight Autonomy 

Annual energy demand for electric lighting 

Thermal comfort Percentage of occupied hours with PMV within a range (e.g. from 

-1 to 1) 

Mean Predicted Mean Vote (PMV) 

Mean Predicted Percentage Dissatisfied (PPD) 

Solar heat gain management Annual energy demand for heating  

Annual energy demand for cooling 

Aesthetics No accepted metric 

Privacy Direct-direct transmittance in the visible spectral range below a 

threshold (e.g. 0.1%) 

 

3. Selection of a fenestration system and control strategy 

Weighting the different façade functions for each studied room is followed by a selection of suitable 

façade systems. Considerations such as exterior, in-between glazing or interior, fixed or retractable 

shading devices, the type of shading device (e.g. roller shutters, roller blinds or venetian blinds), as 

well as the properties of the shading device and glazing unit, must be taken at this stage. In addition, a 

control strategy for the shading device must be selected, starting by choosing between purely manual 

control and manual control combined with automatic features. 

The performance of a switchable fenestration system is entirely dependent on the control strategy. 

The control strategy should maximize the hours of uncovered façade and thus to benefit from the 

outside views. At the same time, for the hours when the façade is covered, the control strategy must 

allow a certain contact with the outside. In addition, the system must preserve a glare-free space, it 

must maximize daylight as much as possible and it must reduce the heating and cooling energy 

demand of the room, or alternatively influencing positively the thermal comfort of the room. 

The design of the control strategy consists of establishing the priorities among functions and 

defining the setpoints for each of these metrics. This can be achieved by using dynamic building 

simulations. The Fener simulation engine [7], developed at Fraunhofer ISE, offers the possibility to 

easily compare different fenestration systems and control strategies in terms of daylight provision, 

glare protection and energy demand. Fener is a building program based on the three-phase method [8] 

and a detailed energy balance of one room. It calculates simultaneously the heating and cooling energy 

demand of the room, thermal comfort metrics, daylighting metrics and daylight glare indexes.  
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4. Evaluation of the retrofit solution 

The last step of the proposed workflow is to evaluate the performance of the retrofit solution compared 

to the existing scenario through dynamic thermal and daylighting simulations. The simulation tool 

must be able to calculate the metrics defined in the first step of the workflow. Based on the simulation 

results, the fulfilment of the requirements by the new retrofit solution can be checked and, eventually, 

changes to the retrofit solution can be further evaluated.  

5. Case study 

A case study is presented to illustrate the proposed workflow. This example focuses on the 

optimization of the control strategy of a facade system for an office and a residential building in 

Bilbao (Spain). Table 2 summarizes the boundary conditions of the two applications. 

 

Table 2. Boundary conditions of the office and residential rooms considered in the case study. LT 

refers to local time and ACH refers to air changes per hour. Internal heat gains refer to square meters 

of floor area. 

Building type Office Residential 

Location Bilbao Bilbao 

Orientation West West 

Glazing ratio 80% 40% 

Working hours 8-18 LT (weekdays) 18-8 LT 

Infiltration/ventilation 0.6 ACH / 0.2 ACH 0.5 ACH 

Internal heat gains 15 W m
−2

 10 W m
−2

 

Cooling thermal setpoint 26 ◦C None 

Heating thermal setpoint 20 ◦C 20 ◦C 

Construction type Heavy Heavy 

U-value of external wall 0.2 W m
-2

 K
-1

 1.7 W m
-2

 K
-1

 

 

 

Table 3. Summary of the results of the analysis of the case study. 

Requirement Metrics (Office) Metrics (Residential) 

Daylight provision Percentage of occupied hours 

with average horizontal 

illuminance above 300 lux 

Percentage of occupied hours 

with average horizontal 

illuminance above 300 lux 

Glare protection Percentage of occupied hours 

with maximum vertical 

illuminance below 3500 lux 

Not relevant for residential 

buildings 

Solar heat gain management Heating energy demand 

Cooling energy demand 

Heating energy demand 

Mean PMV for thermal comfort 

View contact with the outside Not evaluated Not evaluated 

 

Both applications, office and residential, are west oriented and have the same fenestration system. 

The fenestration system consists of an insulating double-glazing unit and vertical interior textile 

blinds. Given the location and the dimensions of the room, the transmittance of the blinds is sufficient 
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to provide enough daylighting in the room during the central hours of the day for the office room. 

However, the interior blinds cannot prevent high solar heat gains in the afternoon, which produce a 

high cooling energy demand in the case of the office and thermal discomfort in the case of the 

residential room. The originally installed vertical blinds can be manually rotated or fully retracted. In 

both cases, the occupants tend to constantly leave the blinds closed in order to prevent high irradiation 

levels on the façade in the afternoon and to provide privacy in the case of the residential room. The 

fact that the blinds are constantly closed due to an inconvenient manual control prevents the occupants 

from enjoying outside views. Additionally, the used roller blind material prevents any contact to the 

outside when the blinds are closed. 

Based on the analysis of the case study, the requirements of the retrofit solution are summarized in 

table 3.  

In both cases, the chosen fenestration system for retrofitting is an exterior roller blind with an outer 

reflective surface. Exterior shading devices are much more effective to prevent solar heat gains than 

interior ones. The chosen textile has an openness coefficient (normal-normal transmittance) that allows 

a view through the textile material, which the original material did not. The openness coefficient is 

small enough to prevent glare when the blind is closed.  

 

Table 4. Control algorithms of the façade system written in pseudo-code. The setpoints SP1, SP2, 

SP3, SP4 and SP5 are calculated through an optimization process. 

Office Residential 

if occupation: 

if average_workplane_illuminance>SP2:  

if indoor_air_temperature>SP1: 

or 

max_vertical_illuminance>SP3:  

CLOSE 

else: 

OPEN 

else: 

OPEN 

else: 

if daytime: 

if indoor_air_temperature>SP1:  

CLOSE 

else: 

OPEN 

else: 

if indoor_air_temperature>SP1:  

OPEN 

else: 

CLOSE 

if occupation: 

if average_workplane_illuminance>SP5:  

if indoor_air_temperature>SP4:  

CLOSE 

else: 

OPEN 

else: 

OPEN 

else: 

if daytime: 

if indoor_air_temperature>SP4:  

CLOSE 

else: 

OPEN 

else: 

if indoor_air_temperature>SP4:  

OPEN 

else: 

CLOSE 

 

 

Two shading control algorithms, one adapted to the office case and one adapted to the residential 

case, were developed to optimize the functions of the fenestration system (table 4). For both of the 

algorithms, when the room is unoccupied, the algorithm compares the measured indoor temperature 

with a temperature setpoint in order to decide whether to activate the shades during day blocking solar 

heat gains or to deactivate them during night enhancing heat transfer through the window. When the 

room is occupied, a minimum daylighting level must be reached before the shade is closed. Once the 

daylight condition is fulfilled, the algorithm checks the indoor air temperature for both the office and 

the residential rooms. Additionally, the algorithm for the office also checks the maximum vertical 
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illuminance to prevent glare. For the residential case, glare protection is not considered as a 

requirement. If any of these variables reaches a certain threshold, the shades are activated. 

An optimization process is setup in order to obtain the setpoints of the control algorithms. The 

Fener tool [9] is used to compare scenarios with different setpoints. The metrics used to compare 

scenarios for the office case are the following: the percentage of occupied hours where the average 

horizontal illuminance is above 300 lux (daylight provision), the percentage of occupied hours where 

the maximum vertical illuminance is below 3500 lux (glare protection), the heating energy demand 

and the cooling energy demand (solar heat gain management). For the residential case, the metrics 

used to compare scenarios are the following: the percentage of occupied hours where the average 

horizontal illuminance is above 300 lux (daylight provision), the heating energy demand and the mean 

PMV for thermal comfort (solar heat gain management).  

 

Table 5. Results of the optimization process for the office. SP1 refers to a temperature setpoint (
o
C). 

SP2 and SP3 refer to illuminance setpoints (lux). The selected setpoints correspond to case 4. 

Cases SP1 

(°C) 

SP2 

(lux) 

SP3 

(lux) 

Occupied 

hours of 

daylighting 

Occupied 

hours without 

glare 

Heating 

Demand 

[kWh m-2 

year-1] 

Cooling 

Demand 

[kWh m-2 

year-1] 

1 23 300 3200 65% 95% 9 17 

2 23 500 2760 66% 93% 10 21 

3 24 500 3500 66% 93% 10 21 

4 25 300 3500 68% 95% 9 17 

 

Table 6. Results of the optimization process for the residential room. SP4 refers to a temperature 

setpoint (°C). SP5 refers to an illuminance setpoint (lux). The selected setpoints correspond to case 2. 

Cases SP4 SP5 Occupied hours 

of Daylighting 

Heating Demand 

[kWh m-2 year-1] 

Mean PMV 

1 23 300  10% 3 0.7 

2 23 500 12% 3 0.8 

3 25 400 11% 3 0.8 

4 26 400 11% 3 0.9 

 

The results of the optimization process for the office and residential cases are shown in table 5 and 

6, respectively. The selected setpoints to be used in the control algorithms are the ones corresponding 

to case 4 for the office case and to case 2 for the residential case. 

To evaluate the retrofit solution as compared to the existing baseline scenario, dynamic simulations 

are run with the Fener tool under the boundary conditions indicated in table 2. In the baseline scenario, 

the original interior blinds are fully closed all the time. In the retrofit scenario, the proposed roller 

blinds are activated according to the control algorithms described above. Figure 2 shows the heating, 

cooling and lighting energy demands for the baseline and retrofit scenarios of the office (left) and of 

the residential room (right). For the office case, by taking only the occupied hours, the results indicate 

that the application of the exterior roller blind would result in an important reduction of cooling energy 

demand (63%). For the residential case, the results indicate that the application of the exterior roller 

blind would result in a reduction of both heating energy demand (13%) and lighting energy demand 

(58%). 



SBE19 Brussels BAMB-CIRCPATH

IOP Conf. Series: Earth and Environmental Science 225 (2019) 012034

IOP Publishing

doi:10.1088/1755-1315/225/1/012034

7

 
 
 
 
 
 

 
 

Figure 2.   Heating, cooling and lighting energy demands of baseline and retrofit scenarios of the 

office and residential cases. 

The thermal comfort of the occupants of the residential case appreciably improves with the new 

fenestration system and control algorithm. The mean PMV of the baseline and retrofit scenarios for the 

residential room is shown in figure 3 on a monthly basis. PMV values are closer to the optimal state 

(PMV = zero) in the retrofit scenario. 

 

 
Figure 3.   Predicted Mean Vote (PMV) of thermal comfort for the baseline (blue) and retrofit (red) 

scenarios for the residential case.  

 

In terms of the daylighting and visual comfort, the retrofit solutions improve the daylight provision 

from 20% to 68% for the office room and from 1% to 12% for the residential room. For the residential 

case, it should be noted that the occupied hours are the early and late hours of the day. On the other 

hand, the percentage of occupied hours without glare decreases from 100% to 95% for the office 

room. The number of hours with unobstructed views to the outside significantly increases with the 

new control strategy.  

6. Conclusions 

In this study, a workflow for the conceptual planning of façade systems as applied to building 

retrofitting has been presented. According to this workflow, the design of the façade system must be 

carried out first at room level. Once the façade solutions for the individual rooms are analysed, a 

harmonized solution at building level can be determined, which must then be re-tested at room level. 

The workflow consists of analysing the level of importance of the different functions of a façade for a 
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particular application and then applying automated control and building simulations to optimize the 

design. The functions analysed in this case study are visual contact with the outside, daylight 

provision, glare protection, solar heat gain management, but other functions such as burglary 

protection and privacy can also be included.   

The proposed workflow is illustrated through a case study in Bilbao (Spain). The case study 

consists of two west-oriented rooms with different uses: office and residential. Two different shading 

control strategies for the room automation system are designed for the office and the residential rooms. 

As a result, the energy demand for cooling is significantly reduced in the office room and the thermal 

comfort increases in the residential room. In addition, the occupants have more hours of undisturbed 

view contact with the outside and better daylighting than in the baseline scenario. 

The study highlights the need to take into account the multifunctional nature of building façades in 

the design of retrofitting solutions. It also show how advanced building simulations can be used very 

targeted to assists in different stages of the design process without replacing expert decision making 

by the designer.  
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