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Abstract. This paper presents a comprehensive analysis of the Electric Vehicles (EVs)
charging behaviour based on the data collected from the UK flagship demonstration project —
Low Carbon London. Data of seventy residential charging facilities over one year are
processed and analysed. The charging behaviour of the cluster of charging facilities and
selected charging facilities are analyzed respectively. Based on the in-depth analysis, the
potential of the EV charging facilities for joining the demand side management program are
further investigated. To evaluate the performance of using charging facilities to join Demand
Side Management (DSM) program, numerical analysis based on different DSM programs are
presented.

1. Introduction

Electric vehicles are playing an increasingly important role in transportation sector. The EV new sales
market share has hit 1% in 2017, and is expected to increase to more than 20% in 2025 in U.S. [1].
The increasingly penetration of EV will bring significant benefits for reducing the carbon emission
because transportation takes large share of energy consumption all around the world [2]. However,
large amount of EVs will bring serious burden to the distribution network due to the convergence of
charging behavior, and could make the evening peaks even worse, especially during winter and
summer seasons[3].

Aiming to evaluate the impacts of EVs on distribution network, a number of research have been
performed on EV charging modeling, EV charging behavior analysis and EV charging scheduling [4-
8]. [4] evaluated the impact of EV charging in the single wholesale electricity market in Ireland under
the assumption of 10% vehicles are powered by electricity, and found that off-peak charging is more
beneficial than peak charging. [5] investigated the impacts of EV recharging on Western Australia
network. It highlighted that the annual peak demand will not be significantly influenced by EV
charging if the share of EV is less than 10%, but the electricity transmission and distribution network
operators can achieve reasonable benefits if the EV charging can be regulated. [6] modeled the EV
charging behavior using the long-term electric energy data of an electric vehicle charging station, and
verified the model accuracy with the field-measurement data. The proposed model has sounding
accuracy and can assist the distribution network analysis. [7] performed the impact analysis of EV
charging on Malaysia distribution network. It made similar conclusion given in [5] that 10% EV
penetration level is safe to the distribution network. It also highlighted that a newly built residential
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LV network can accommodate up to 60% EV penetration if the charging of EV can be regulated. [8]
modeled the EV charging profile based on a population of electric vehicles with GPS travel data that
collected during an electric vehicle demonstration trial.

Most of the aforementioned researches model the EV charging profile using simulated data or the
petrol powered vehicles data. The change of EV charging behavior over time is less considered, and
the inertia of the charging activities is not investigated. However, how often the EV owners charge
their vehicles in the real-world and whether they charge their vehicles in a regular way are important
factors for evaluating their impacts to distribution network and their potential for participating the
DSM schemes. [9] observed that the average distance for each drive of EV(Nissan Leaf) owners are
6.9 miles, and the daily average driving mileages is around 30 miles based on the 8,300 U.S EV
driving data. [10] analyzed the EV charging profile with considerations of actual state-of-charge of the
battery, parking duration and parking type. The proposed methodology showed good performance for
predicting the plug-in EV load for the region that the EV usage data are not available.

Aiming to further analyze the EV charging behavior and explore the operation characteristics of
residential EV charging facilities, especially the inertia of EV charging activities and their charging
connection time, this paper performed a comprehensive analysis on the EV charging data of 70
residential users collected from UK flagship demonstration project. The charging behavior of the
cluster of charging facilities and selected charging facilities are analyzed respectively. Based on the in-
depth analysis, the potential of the EV charging facilities for joining the demand side management
program are later investigated. To evaluate the profitability of using charging facilities to join Demand
Side Management (DSM) program, numerical analysis based on different DSM programs are

presented.
The remainder of this paper is organized as follow: Section Il presents the analysis of 70 EV
charging facilities. Section IIl1 presents the remarkable DSM schemes and the evaluation

methodologies for EVs that participate the DSM schemes. The numerical results of the potential of
residential EV charging facilities for participating the DSM schemes are presented in section 1V, and a
brief conclusion is given in section V.

2. ANALYSIS OF RESIDENTIAL CHARGING FACILITIES

The EV charging data used for analysis in this paper are collected from the UK flagship demonstration
project — Low Carbon London. The EV charging load profiles consists residential EV charging
information from 70 different users (saved in CSV format) over one year from January 2013 to April
2014. 5 of the 70 EV charging CSV files are empty and 27 of the 70 CSV files include null values
with percentage larger than 50%, thus 38 EV charging load profiles are analyzed in this sector aiming
to evaluate the charging behavior of EV owners.

2.1 General Charging Behavior Analysis of All Charging Systems

This section analyses the EV charging behaviour from the perspectives of charging power, charging
connection time and the charging durations points of view. The analysis aims to explore the in-depth
EV charging characteristics that can be coupled with DSM schemes.

The average EV charging power by time is presented in Figure 1. The charging power of 38 EV
charging profiles are aggregated by time over one year time period. It is obvious that the charging
peak time of residential users is between 8PM and 9PM. The minimum charging power is at 4AM,
which means most of EV charging activities are finished by early morning. According to the normal
departure time, the residential vehicle users usually leave home at around 7AM [11]. This means most
of the flexible charging time for EVs are larger than 3 hours.
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Figure 1. Mean EV Charging Power Figure 2. Distribution of EV Charging
Connection Time

In order to further investigate the EV charging behaviour, the charging connection time of the EVs
are analysed. The connection time of EVs are calculated based on the logic that if the power of charger
is larger than 0.5kW (means the time period of EV connected with the charger with 3.2kW rating
power is longer than 10 minutes) and the previous charging power in the previous two times slots are
smaller than 0.1kW (aim to mitigate the influence of standby current on EV charger), the connection
time of EV is determined and recorded. The EV charging connection time is shown in figure 2. It can
be found that most of EVs are connected to the charger between 4PM and 10PM, which can support
the conclusion of EV charging peak usually occurs between 8PM and 9PM.

The charging duration of single charging activity is another factor that will influence the flexibility
of EVs. The charging duration calculation is performed based on the logic that once the connection of
EV is detected, the charging duration starts calculating until the charging finishing time (charging
power is smaller than 0.1kW) is detected. The charging duration of 38 EVs over one year is presented
in Figure 3. It can be found that the charging duration between lhour and 2 hours are the most
frequent among all the durations. According to the survey of the EV residential users of Low Carbon
London trials, most of them declared that their daily travel distance using EV is less than 30 miles.
The charging duration can be calculated using the equation below.

T,=Dxgxn (1)
Where Tc represents the charging duration of EV, D represents the distance the EV travelled, E

represents the energy that EV consumes per mile, P represents the rating power of EV charger and n
represents the charging efficiency of EV charger.
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Figure 3. EV Charging Durations Figure 4. Cosine Similarities of EV Chargers
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According to the parameters of the EV and chargers used during the trial, the charging duration is
equal to 1.92 hours if the daily mileages are 20 miles (with assumptions that the charging
efficiencyn = 0.95,E = 0.2kWh/km, P = 3.2kW), which is similar to the average charging duration
2.27 hours obtained from demonstration projects.

2.2 Charging Behaviour of Selected Charging System

In this section, the inertia of EV charging activities are analysed and selected charging profile are
evaluated. The inertia of individual EV charging profile refers to the strength of users that follow their
charging behaviour. If users’ charging activities have larger inertia, it means the users are more likely
to charge their EV at same frequency and same connection time, which are valuable controllable
resources for DSM schemes.

The inertia can be represented by similarities in mathematics such as Euclidean distance,
Manbhattan distance and cosine similarity. Cosine similarity is used as a metric for measuring distance
when the magnitude of the vectors does not matter. Since the EV chargers have the same charging
rating power during the trial, the magnitude of the vector will be generally same when the EV are
being charged, and the connection time and disconnection time are the two most important factors for
measuring the charging behaviour similarity. Therefore, the cosine similarity is selected to measure the
EV charging inertia.

The calculation of EV charging inertia using cosine similarity follows the equations below.

AxB Z?:l AiBj

BN VA
A= [Pt:Pt+1'Pt+2' ---:Pt+23] 3)
B = [Pt+24»' Pii25, Peizes ---'Pt+47] “4)

Where A and B are the 24-dimension vectors that represents the 24-hr power of EV charger.

The day-by-day similarities of EV chargers in weekdays and weekends are shown in figure 4. It can
be found that 72.5% EV chargers have the cosine similarities equal to or more than 0.4 during
weekends, and 74.2% EV chargers have the cosine similarities equal to or more than 0.4 during
weekdays, which conclude that the EV charging behavior has reasonable inertia.

To further evaluate the inertia of EV charging behaviour with regarding to the cosine similarity. An
EV charger with cosine similarity equal to 0.65 is taken as an example. The similarity distribution of
the EV charger over one year is given in figure 5. It is observed that the day-by-day similarities is
ranged between 0 and 1, and more than 30% of the similarities are more than 0.9. A seven-day
charging profiles of the EV with cosine similarities larger than 0.9 is presented in the sub-figure in
figure 5. It can be observed that the EV is connected to the charger at similar time and with similar
charging duration during the seven days. Such characteristics indicates that the EV users would
maintain their charging behaviours in certain periods, and their daily vehicle usage are similar in the
same period.
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Figure 5. Cosine Similarities Distribution of one EV Charger with Mean Similarity=0.65




AT3E 2018 I0P Publishing
IOP Conf. Series: Earth and Environmental Science 223 (2019) 012034  doi:10.1088/1755-1315/223/1/012034

2.3 Charging Behaviour of Selected Charging System
According to the analysis presented in part A and part B, a number of findings can be concluded as
below.

1) Residential users in the London trial start charging their charging connecting time most
frequently between 6pm — 8 pm.

2) The charging peak of residential EV users usually happens between 8PM — 9PM.

3) The average daily traveling distance of the residential EV owners is less than 30 miles, which
can be charged in full in 2 hours.

4) The charging behaviour of EV users has high similarities in both weekday and weekend.

5) There are obvious inertia observed from the charging profiles that users have similarity larger
than 0.5.

3. ANALYSIS OF RESIDENTIAL CHARGING FACILITIES
This section introduces the DSM schemes that would be available for the electric vehicles. The
limitations and challenges of using EV to participate the DSM schemes are also presented.

3.1 Time of Use (TOU) Tariff

The TOU tariff allows energy companies charge energy consumers at different rates in different time
period. The mainstream TOU tariffs available in the market are Economy 7, Economy 10 and Critical
Peak Pricing (CPP). Economy 7 tariff usually allows energy consumers get a lower price between
0:00AM — 7:00Am, and Economy 10 tariff allows consumers get a lower price between 8PM — 8AM.
CPP tariff usually notices the energy consumers higher energy rates for selected hours/days if utility
companies anticipate a price rise in energy wholesale market.

For using TOU tariff to shift the EV charging load from DSM point of view, the pricing mechanism
is the key factor that influencing the load shifting performance. It is difficult for utility companies to
balance their savings in shifting the load to off-peak time and the cost of encouraging EV users to
change their energy using behaviour.

3.2 Direct Load Control (DLC)

DLC is one kind of DSM schemes that allows utility companies to manage consumers’
appliance/devices (i.e water boiler, electric heater, and air conditioner) when the increase in peak
demand or price rise in wholesale market is anticipated. The incentives for DLC participants could be
invoke payment, annual reservation payment, electricity discounts or free hardware. The DLC events
would be limited under certain frequency during the time period and the total number of invoking
DLC events would also be regulated under different contracts.

EV can also participate the DLC scheme as an interruptible load [12]. There are a number of
demonstration projects across the world that use EV for DLC scheme [13].[14] reported that only
about 13% customers might accept the DLC program based on a total of 1,499 householders from one
state in Australia. Thus, for encouraging EV owners to accept the DLC scheme, the scheme needs to
be designed carefully and enough freedom should be allocated to the participants.

3.3 Vehicle to Grid (V2G) Technology

The V2G technology gives the capabilities of bi-directional charging to EVs, so that the EVs can
communicate with the power grid to sell demand response service by taking electricity from grid and
selling their stored electricity to grid to balance the electricity demand and supply.

The V2G technology is still a relatively new technology and most of V2G infrastructures are still in
Research and Development (R&D) stages [15]. [16] highlighted that the VV2G technology would have
great potential for the electric power grid balancing, but at current stage it is still difficult to promote
unless the cost of battery degradation can decrease to a reasonable level.
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4. NUMERICAL ANALYSIS

According to the analysis performed in section Ill, the TOU and DLC scheme would be two
reasonable choices for encouraging EVs to participate into the DSM program. The V2G technology
could be the DSM choice for EVs only if the cost of battery degradation can be covered by the DSM
financial incentives, which is still difficult to achieve at the moment. Therefore, the potential of using
EVs to participate into TOU scheme and the DLC scheme are analysed in this section.

4.1 EV potential for DSM under TOU scheme
To evaluate the EV potentials for DSM in TOU scheme, the pricing mechanism and the willing of EV
owners to shift their EV charging time should be taken into account. A CPP tariff pricing problem is
presented in the following part and the numerical analysis of using such pricing mechanism to manage
the EV charging in shown behind.

The pricing of CPP can be formulated as a mathematical optimization problem as below.

min [ %=0(Ptc+m - PtM-I{m) X ACQHm + ZrA{I:I\I/\I’ Pg/l-i{n X AQt:+n] (6)
Subject to AQesm = QFlm X 222 @
t+m
Z%=OAAQQt+m = Z%:K/IV AQ¢sn (8)
t+n

tn_ <
M —08Qtem — 0 ©)
P&y =0 (10)
Otsm = Plim (11)

Equation (8) is the objective function for the CPP pricing problem. PE, ,,, represents the critical time
price at time t+m (M refers to the length of critical pricing period), P/¥,, and P/Y,, represents the
wholesale electricity price at time t+m and t+n, AQ; ., represents the energy of EV that would like to
be shifted, AQ;., represents the energy of EV that will be shifted to the time slot t+n. Equation (7) —
(11) illustrate the constraints of the pricing problem. Equation (7) describes the relationship between
the willing of EV owners to participate into the CPP scheme and the price of CPP. It shows that the
willing will increase along with the increase of the CPP price. Equation (8) ensures the balance of the
shifted energy. The pricing problem is a Quadratic Programming (QP) problem and all the constraints
are linear, which can be solved by Gurobi, CPLEX and other commercial solvers.

The numerical analysis of evaluating the EV potential under CPP scheme using the above
mathematical model is given in the following part. The wholesale market price used in the analysis is
obtained from the EPEX wholesale market, the energy of EV which is available for load shifting
during CPP period is calculated based on the EV connection time and charging duration distributions
in the Low Carbon London trial. The CPP event period is assumed as 3 hours between 8:00PM —
11:00PM. It is also assumed that the shiftable EV loads can be shifted to post CPP event time periods
of 8 hours (7TAM).

Figure 6 presents the shifting of EV charging loads under CPP scheme. The price of CPP scheme
during the CPP event is optimized to 0.415€/kWh (66% higher than the original electricity price), and
a total of 49.78kWh EV loads between 8:00PM — 11:00PM are shifted to the later time till 7:00AM. It
can be found that the peak load during the 10 hours has been reduced from 30.95kW at 10:00PM to
23.62kW at 11:00PM, which is a 23.7% peak load reduction. The EV charging loads are shifted to the
time period between 00:00AM and 7:00AM, and most of the charging loads are moved to the time
periods with lower wholesale electricity price (3:00AM — 6AM). The shifted load to a single slot is
limited to 30% of all shiftable load using the constraint of equation (9), which ensures the shifted load
will not generate another evening peak. It can be concluded that the EVs have good performance
under CPP scheme if the CPP price is set appropriately, and the load shifting will not generate other
evening peaks if constraints of load shifting are configured.
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Figure 6. EV Charging Load under CPP scheme

4.2 EV potential for DSM under DLC scheme

The control logic of DLC will influence the performance of using interruptible loads in DLC scheme
[17]. A number of DLC control methodologies have been proposed in previous research [18-20]. Since
the paper aims to analyze the potential of EV for DSM under DLC scheme, the control logic of DLC is
not the most important factor. A simplified DLC control logic is proposed in figure 7 to evaluate the
EV charging shifting potential based on the DLC control logic proposed in [21].
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Figure 7. DLC Flowchart from Network Operator Point of View

Based on the proposed DLC control logic, when a DLC event needs to be invoked, the network
operator will firstly search the interruptible loads that are available during the DLC event. In the
numerical analysis performed in this section, following assumptions are made to simplify the analysis
of EV potential for DSM under DLC scheme:

*100% EVs that connected to the grid during DLC event are available for DLC control.

*EVs connected to the grid in the previous hour of DLC event and the expected charging durations
are longer than 1 hour are available for DLC control (The percentages of EV that have charging
duration longer than 1 hour can be obtained from the charging hours duration distribution in Figure 3).

*EVs that connected to the grid two hours earlier than DLC event and their expected charging
durations are longer than 2 hours are available for DLC control.

*The EVs that are invoked during DLC event can be reconnected to the network evenly during the
post 3 hours after DLC event.

*The EVs that are connected to the grid three hours earlier than DLC events are considered as un-



AT3E 2018 I0P Publishing
IOP Conf. Series: Earth and Environmental Science 223 (2019) 012034  doi:10.1088/1755-1315/223/1/012034

interruptible loads.

According to the assumptions given above, and the DLC event is assumed to occur at 10:00PM for
one hour, the EV charging profile under DLC scheme is shown in Figure 8. The peak load at 10:00PM
is reduced from 30.95kW to 14.56kW, which is a 53.6% load production during DLC event. However,
it can be found that another peak load equal to 29.01kW occurs at 11:00PM, and it is because 5.47kW
EV charging load is shifted to 11:00PM. The loads between 00:00AM to 2:00AM are increased as well
with the shifted EV loads. It can be concluded that EV achieve good performance on reducing peak
load during DLC event. However, other evening peaks (as seen in Figure 8) could be generated as the
EV load could be reconnected to the grid after the DLC event.
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Figure 8. EV Charging Load under DLC scheme

5. Conclusion

This paper has given a comprehensive analysis of EV charging behaviour based on the data from Low
Carbon London project. From the analysis performed in section II, it is found that most of EV
charging durations of residential users are shorter than 3 hours, and obvious inertia of charging
behaviour are detected. Such inertia could assist the forecast of EV charging load and the design of
DSM program. In section Ill, the mainstream DSM program including TOU, DLC and V2G are
discussed. Two DSM program, CPP (one kind of TOU) and DLC, are selected to evaluate the
potential of EV for participating the DSM program in section IV. It is found that EVs achieve good
performance of shaving the loads under CPP and DLC scheme. However, other evening peaks could
be generated under DLC scheme, which is caused by the reconnection of EV after DLC event. Thus, it
is important to schedule EV reconnection time after DLC event when designing the DLC control logic.
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