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Abstract. Unsaturated hydraulic conductivity (K (h)) is important soil-physical characteristic, 
especially by determination of infiltration intensity, irrigation regime, drainage proposals, 
simulation of pollutants and other agricultural and hydrological processes.  K(h) is determined 
by soil structure and texture. Measurements are therefore considerably influenced by the 
heterogeneity of the soil composition. The disc infiltrometer has become a popular apparatus for 
measuring in situ K(h) of the soil at some prescribed potential. A number of different methods 
have been proposed for calculating K(h) using the flow rate (Q(t)), from the infiltration disc with 
different radius. Measurements of Q(t) on a Sekule sandy soil were made using minidisc 
infiltrometer (METER Group Inc., Pullman W.A.) with radius of 22,5 mm and disc tension 
infiltrometer (Eijkelkamp Soil and Water B.V.) with radius of 100 mm. Measurements were 
made at potentials of −20 mm with both devices. K(h) values were calculated using 2 different 
methods. The aim of our work was to test two K(h) measuring devices with different size of 
infiltration ring in order to check how the differences affects K(h) determination. This would 
give an idea which method would be more appropriate to use regarding the time-consume, effort 
and better characterization of the soil heterogeneity. Statistically significant difference (p<0.05) 
was found when applying both methodologies. However, there is still a need to understand how 
both methodologies influence the variation of the parameters. 

1.  Introduction 
Surface conditions of a field influence the infiltration of water into the soil profile. At the beginning and 
receding periods of a storm event, when the soil is not saturated, unsaturated hydraulic conductivity 
(K(h)) of the thin surface soil affects the vertical infiltration process [1]. Moreover, saturated hydraulic 
conductivity (Ks) of the surface layer will influence overland runoff produced relative to the downward 
infiltration in the subsoil during a storm event [1]. 

The tension disc infiltrometer allows measurements of infiltration with a constant and small negative 
pressure head, h0, at the soil surface, and has been extensively used in recent decades to measure the 
near-saturated hydraulic conductivity [2], [3], [4], [5], [6]. Various methodologies have been proposed 
to determine K(h) from three-dimensional infiltration experimental data from circular source at soil 
surface using the tension disc infiltrometer. Among these, some are based on steady-state flow data and 
others on transient flow data [7], [8], [9], [10], [11], [12]. 

Most studies on the scale effects of hydraulic properties focused on the support (sample size) effects. 
[13] found that the Ks rates decreased rapidly with increasing ring diameter. [14] confirmed that a larger 
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sample size had a greater probability for the presence of large macropores, resulting in larger Ks values. 
[15] recognized variation of estimated values of Ks between different disk sizes. [16] investigated the 
influence of sample volume and shape on estimates of saturated flow in a cylinder infiltrometer and 
showed that the mean infiltration rate increased as the diameter increased, whereas the standard 
deviation and range also increased with increasing diameter. [17] observed that the variability of the 
measured hydraulic conductivity was greater for smaller inner rings and gradually decreased as the inner 
ring size increased. [18] investigated the combined effects of the inner and outer ring sizes of a double-
ring infiltrometer on the measurements of field Ks, and they found that the inner ring size was a more 
important factor to be considered than the buffer index itself (or the outer ring size) in practice. [19] 
quantified three important variability components, i.e., measurement technique, spatial arrangement in 
sampling and differing landscape features, to map Ks distribution. Different measurement methods can 
yield different mean Ks values, and spatial patterns. Ks values measured with a tension infiltrometer 
were significantly greater than those measured with the soil core and Guelph permeameter methods. The 
total variability of Ks obviously decreased with decreasing sampling extent. 

The objective of this study was to quantify the effect (i) of different infiltration ring size and (ii) 
different calculation methods on K determination. 

2.  Materials and methods 
2.1. Study area 
Study area (Site S) is located near Sekule (48°37’10’’ N, 16°59’50’’ E) in the Borská nížina lowland 
(southwest Slovakia). The region is in transition zone between temperate oceanic and continental 
climates. Mean annual temperature is 9°C. Mean annual precipitation is 550 mm, and it is mainly 
summer-dominant. Aeolian sandy soil from these sites is classified as an Arenosol [20] and sandy texture 
was measured for whole soil profile [21]. Physical parameters of sand dunes at site S, especially the 
grain size distribution were almost similar through the whole soil profile; since Arenosols are 
unconsolidated sand deposits, the soil profile is without any different soil horizons to the depth of 2 m, 
we assumed that the only effect on measured K values had different size of infiltration disc. 

Physical and chemical properties of soil at site S are stated in table 1. Corg was determined by 
oxidation with K2Cr2O7-H2SO4 and titration of non-reduced dichromate at the mean sample collected 
sites. Soil texture was determined by the pipette method [22], [23]. Soil pH was determined 
potentiometrically (1:2.5 – soil: distilled water). Percent calcium carbonate (%CaCO3) was estimated 
by Calcimeter [24]. 

 
Table 1. Physical and chemical properties of soil at site S (top 10 cm of soil profile). 

Site Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Depth of 
organic layer 

(cm) 

CaCO3 
(%) 

Corg 

(%) 
pH 

(H2O) 
pH 

(KCl) 

S 91.30 2.80 5.90 10 <0.05 9.90 5.14 3.91 

 

2.2. Field measurement methods and theory of water flow from tension discs 
All field experiments described in this part were conducted on 7th September 2017. 

Volumetric soil water content θ (m3 m-3) of the superficial (0–5 cm) soil layer was measured with 
the moisture meter HH2 and soil moisture sensor SM200 (Delta-T Devices Ltd., Cambridge, UK). 
Harmonization of different methods for soil moisture measurements was presented by [25]. 

Field measurements of infiltration were performed using a minidisk infiltrometer and disc tension 
infiltrometer. K(h) was measured by the minidisk infiltrometer (METER Group Inc., Pullman W.A.) 
with infiltration disc radius of 22,5 mm and disc tension infiltrometer (Eijkelkamp Soil and Water B.V.) 
with radius of 100 mm under a negative tension h = –20 mm (figure 1). Infiltration experiments were 
accomplished at 200 cm × 200 cm cell. Prior to the measurements, the litter layer was removed gently 
to prevent disturbance of the mineral soil.  



World Multidisciplinary Earth Sciences Symposium (WMESS 2018)

IOP Conf. Series: Earth and Environmental Science 221 (2019) 012024

IOP Publishing

doi:10.1088/1755-1315/221/1/012024

3

 
 
 
 
 
 

 
 

              

Figure 1. Minidisk infiltrometer (left) and disc tension infiltrometer (right).  

(source http://www.soilmeasurement.com; http://manuals.decagon.com) 
 
[26] equation which is at the basis of the steady-state flow theory approximates the steady infiltration 

rate, qo∞, from a disc as 

 
                                                        (1) 
 

 
where K(h) is the hydraulic conductivity at the imposed pressure head h [LT-1], rd is radius of disc [L], 
ϕh is the matrix flux potential [L2T-1] defined by 

 
                                                        (2)                          

 
 
Equation 1 was obtained under the assumption of a quasilinear soil [27], i.e., following [28] K(h) 

relation: 
                                                        (3) 

 
where Ks is the hydraulic conductivity at natural saturation and α is a fitting parameter [L-1]. From 
Equation 3 Equation 2 reduces to 

 
                                                        (4) 
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From measurement of steady-state infiltration fluxes, qo∞, generating from two discs of different 
radius, r1 and r2, namely q1 and q2, the solution of Equation 1 gives [2]: 
 

                                                        (6) 
 
 
 

and 
                                                        (7) 
 
 
 

Several researchers [3], [4], [10] oriented their work on finding analytical solutions for transient flow 
from disc infiltrometers. Expressions for transient infiltration have in common the two-term cumulative 
infiltration equation analogous to [29] equation: 

 
                                                        (8) 

 
where the C1 [LT-0.5] and C2 [LT-1] are coefficients and t is time. 

 
Coefficients C1 and C2 of [10] method, at any infiltration time, are obtained by fitting infiltration data 

vs. time in Equation 1 using least squares optimization technique. [10] proposed linear relationships 
between the coefficients of Equation 8 and the sorptivity S and the near-saturated hydraulic conductivity 
K(h): 

 
                                                        (9) 

 
                                                        (10) 

 
where Α1 and Α2 are dimensionless parameters. 

 
Empirical expressions have been proposed to calculate A1 and A2 parameters [10]. Because the main 

purpose of this study is the estimation of K(h), the necessary parameter A2 can be calculated using the 
following equations: 
 

                                                        (11) 
 
 

 

                                                        (12) 
 
 

where α and n are the [30] equation parameters, h is the infiltrometer negative pressure head, and r is 
the disc infiltrometer radius. 
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2.3 Statistical analysis 
Differences between the parameters estimated in different sites were evaluated using single factor 
ANOVA with Tukey’s Honestly Significant Difference (HSD) post-hoc test. The statistical significance 
in the analysis was defined at p < 0.05. 

3.  Results and discussions 
Infiltration experiments were conducted through the use of a minidisk infiltrometer (MD) and disc 
tension infiltrometer (TD) on designated area with dimensions 200 cm x 200 cm. Before the infiltration 
measurements actual values of θ were measured. Data was processed and values of hydraulic parameters 
(stated in table 2) were computed according the following Equations.  

Example of parameter C2 (from Equation 10) computation for minidisc infiltrometer according 
experimental cumulative infiltration data versus the square root of time and fitted infiltration equation 
for pressure heads -2 cm for a Sandy soil. 

 
 

 

Figure 2. Presentation of experimental cumulative infiltration data versus the square root of time and 
fitted infiltration equation for pressure heads -2 cm for a Sandy soil – computation of C2 parameter for 

minidisc infiltrometer. 
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Table 2. Hydraulic parameters of site S. Soil water content, θ (m3 m-3), in the upper 5 cm of soil 
profile, hydraulic conductivity, Khg(–2 cm) and Khsc(–2cm) computed according to steady-state flow 

theory , and Khz computed according to analytical solutions for transient flow from minidisc (MD) and 
tension disc (TD) infiltrometer. Arithmetic means and standard deviation with the same letter are not 

significantly different from each other (Tukey’s HSD test, P > 0.05). 

Measurement 
method 

Attribute 
Arithmetic 
mean 

Minimum 
value 

Maximum 
value 

Standard 
deviation 

N 

 θ (m3 m-3) 0,0590000 0,05100 0,073000 0,008099383 10 
MD Khg(–2 cm) (cm s–1) 0,01288290 a 0,00744 0,035959 0,008497933a 10 
 Khz(–2 cm) (cm s–1) 0.0056857 0a 0,00285 0,018737 0,004821855a 10 
TD Khg(–2 cm) (cm s–1) 0,03330469 b 0,00315 0,135498 0,04535525 b 10 
 Khz(–2 cm) (cm s–1) 0,02105081 b 0,00200 0,085644 0,02866758 b 10 

MD+TD 
Khsc1(–2 cm) (cm s–1) 
Khsc2(-2 cm) (cm s-1) 

0,04050990 b

0,02608650 b 
0,00160 
0,00171 

0,172676 
0,109545 

0,05861612 b 

0,03705212 b 
10 
10 

 ϕh (–2 cm) (cm2 s–1) 0,04639160 -0,292741 0,075959 0,11320250 10 
 

Values of near–saturated hydraulic conductivity were computed according to Equation 5 (Khg), 
Equation 8 and 10 (Khz) and Equation 6 (Khsc). Values of matrix flux potential (ϕh) were computed 
according to Equation 7. Parameter A2 was estimated for sandy soil, h=-2 cm and r = 2.25 cm and 10 
cm using Equation 11. Parameter α from Equation 5 was determined from [31], for unstructured fine 
textured soil as α = 4 m-1.  

 

 
Figure 3. Box plot [32] describing statistical parameters of estimated K(h) from minidisc (MD) and 

tension disc (TD) data and from combination of steady–state flow data from both discs (MDTD). 
(source:ncss.com/software/ncss) 

Analysis of the obtained dataset revealed that absolute minimal and maximal values of K(h) were 
computed for multiple disc method (Khsc1, Khsc2), which combine the steady–state flow data from both 
discs. The same fact is obviously valid also for arithmetic mean values.  

According to table 2 and figure 3 estimated values of near–saturated hydraulic conductivity can be 
divided into two groups. Significant differences are according to Tukey’s HSD test, between both 
datasets (Khg and also Khz) obtained from minidisc and from tension disc infiltrometer. Our findings are 
in agreement with [16], since arithmetic mean values of K(h) increased with radius of infiltrometer disc. 
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At the same time also the values of standard deviation increased with disc radius for both computational 
methods (steady–state flow and transient flow theory). TD datasets and combined MDTD datasets are 
not significantly different from each other, since MDTD dataset included great standard deviation from 
TD data.  

4.  Conclusions 
The infiltration experiments were conducted on homogenous sandy soil using tension infiltrometers with 
different disc radius. The values of near–saturated hydraulic conductivity were computed according to 
steady-state flow theory and according to analytical solutions for transient flow. According to analysis 
of obtained results we can state, that in the conditions of our experiment: 

(i) absolute minimal and maximal values of K(h) were obtained through multiple disc method, 
which combine the steady–state flow data from different discs; same is valid also for 
corresponding arithmetic mean values; 

(ii) significant differences are between minidisc (MD) and tension disc (TD) infiltrometer K(h) 
datasets; arithmetic mean values of K(h) increased with radius of infiltrometer disc and at 
the same time also the values of standard deviation increased with disc radius for both 
computational methods (steady–state flow and transient flow theory); 

(iii) TD datasets and combined MDTD datasets are not significantly different from each other. 
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